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COMBINATORIAL ANALYSIS 
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Introduction 
Here is a typical problem of interest involving probability: A communication system 
is to consist of n seemingly identical antennas that are to be lined up in a linear order. 
The resulting system will then be able to receive all incoming signals-and will be 
called functional-as long as no two consecutive antennas are defective. If it turns 
out that exactly m of the n antennas are defective, what is the probability that the 
resulting system will be functional? For instance, in the special case where n = 4 and 
m = 2, there are 6 possible system configurations, namely, 

0 1 1 0 
0 1 0 1 
1 0 1 0 
0 0 1 1 
1 0 0 1 
1 1 0 0 

where 1 means that the antenna is working and 0 that it is defective. Because the 
resulting system will be functional in the first 3 arrangements and not functional in 
the remaining 3, it seems reasonable to take ~ = ~ as the desired probability. In 
the case of general n and m, we could compute the probability that the system is 
functional in a similar fashion. That is, we could count the number of configurations 
that result in the system's being functional and then divide by the total number of all 
possible configurations. 

From the preceding discussion, we see that it would be useful to have an effec
tive method for counting the number of ways that things can occur. In fact, many 
problems in probability theory can be solved simply by counting the number of dif
ferent ways that a certain event can occur. The mathematical theory of counting is 
formally known as combinatorial analysis. 

From Chapter 1 of A First Course in Probability, Ninth Edition. Sheldon Ross. 
Copyright© 2014 by Pearson Education, Inc. All rights reserved. 
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Combinatorial Analysis 

2 The Basic Principle of Counting 

Example 
2a 

Example 
2b 

The basic principle of counting will be fundamental to all our work. Loosely put, it 
states that if one experiment can result in any of m possible outcomes and if another 
experiment can result in any of n possible outcomes, then there are mn possible 
outcomes of the two experiments. 

The basic principle of counting 
Suppose that two experiments are to be performed. Then if experiment 1 can 
result in any one of m possible outcomes and if, for each outcome of experiment 
1, there are n possible outcomes of experiment 2, then together there are mn 
possible outcomes of the two experiments. 

Proof of the Basic Principle: The basic principle may be proven by enumerating 
all the possible outcomes of the two experiments; that is, 

(1, 1), (1, 2), ... , (1, n) 

(2, 1), (2, 2), ... , (2, n) 

(m, 1), (m,2)., ... , (m,n) 

where we say that the outcome is (i, j) if experiment 1 results in its ith possible 
outcome and experiment 2 then results in its jth possible outcome. Hence, the set of 
possible outcomes consists of m rows, each containing n elements. This proves the 
result. 

A small community consists of 10 women, each of whom has 3 children. If one 
woman and one of her children are to be chosen as mother and child of the year, 
how many different choices are possible? 

Solution By regarding the choice of the woman as the outcome of the first experi
ment and the subsequent choice of one of her children as the outcome of the second 
experiment, we see from the basic principle that there are 10 X 3 = 30 possible 
choices. • 

When there are more than two experiments to be performed, the basic principle 
can be generalized. 

The generalized basic principle of counting 
If r experiments that are to be performed are such that the first one may result 
in any of ni possible outcomes; and if, for each of these ni possible outcomes, 
there are nz possible outcomes of the second experiment; and if, for each of the 
possible outcomes of the first two experiments, there are n3 possible outcomes 
of the third experiment; and if ... , then there is a total of ni · nz · · · n, possible 
outcomes of the r experiments. 

A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors, and 
2 seniors. A subcommittee of 4, consisting of 1 person from each class, is to be cho
sen. How many different subcommittees are possible? 
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3 Permutations 

Example 
3a 

Example 
3b 

Combinatorial Analysis 

Solution We may regard the choice of a subcommittee as the combined outcome of 
the four separate experiments of choosing a single representative from each of the 
classes. It then follows from the generalized version of the basic principle that there 
are 3 x 4 x 5 x 2 = 120 possible subcommittees. • 

How many different 7-place license plates are possible if the first 3 places are to be 
occupied by letters and the final 4 by numbers? 

Solution By the generalized version of the basic principle, the answer is 26 · 26 · 
26 . 10 . 10 . 10 . 10 = 175,760,000. • 

How many functions defined on n points are possible if each functional value is 
either 0 or 1? 

Solution Let the points be 1, 2, ... , n. Since f(i) must be either 0 or 1 for each 
i = 1,2, ... ,n, it follows that there are 2n possible functions. • 

In Example 2c, how many license plates would be possible if repetition among letters 
or numbers were prohibited? 

Solution In this case, there would be 26 
possible license plates. 

25 . 24 . 10 . 9 . 8 . 7 = 78,624,000 

• 

How many different ordered arrangements of the letters a, b, and care possible? 
By direct enumeration we see that there are 6, namely, abc, acb, bac, bca, cab, 
and cba. Each arrangement is known as a permutation. Thus, there are 6 possible 
permutations of a set of 3 objects. This result could also have been obtained 
from the basic principle, since the first object in the permutation can be any of 
the 3, the second object in the permutation can then be chosen from any of the 
remaining 2, and the third object in the permutation is then the remaining 1. 
Thus, there are 3 · 2 · 1 = 6 possible permutations. 

Suppose now that we have n objects. Reasoning similar to that we have just used 
for the 3 letters then shows that there are 

n(n - l)(n - 2) · · · 3 · 2 · 1 = n! 

different permutations of the n objects. 

Whereas n! (read as "n factorial") is defined to equal 1 · 2 · · · n when n is a 
positive integer, it is convenient to define O! to equal 1. 

How many different batting orders are possible for a baseball team consisting of 9 
players? 

Solution There are 9! = 362,880 possible batting orders. • 
A class in probability theory consists of 6 men and 4 women. An examination is 
given, and the students are ranked according to their performance. Assume that no 
two students obtain the same score. 

(a) How many different rankings are possible? 

3 
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(b) If the men are ranked just among themselves and the women just among them
selves, how many different rankings are possible? 

Solution (a) Because each ranking corresponds to a particular ordered arrangement 
of the 10 people, the answer to this part is 10! = 3,628,800. 

(b) Since there are 6! possible rankings of the men among themselves and 4! 
possible rankings of the women among themselves, it follows from the basic principle 
that there are (6!)(4!) = (720)(24) = 17,280 possible rankings in this case. • 

Ms. Jones has 10 books that she is going to put on her bookshelf. Of these, 4 are math
ematics books, 3 are chemistry books, 2 are history books, and 1 is a language book. 
Ms. Jones wants to arrange her books so that all the books dealing with the same 
subject are together on the shelf. How many different arrangements are possible? 

Solution There are 4! 3! 2! 1! arrangements such that the mathematics books are 
first in line, then the chemistry books, then the history books, and then the language 
book. Similarly, for each possible ordering of the subjects, there are 4! 3! 2! 1! pos
sible arrangements. Hence, as there are 4! possible orderings of the subjects, the 
desired answer is 4! 4! 3! 2! 1! = 6912. • 

We shall now determine the number of permutations of a set of n objects when 
certain of the objects are indistinguishable from one another. To set this situation 
straight in our minds, consider the following example. 

How many different letter arrangements can be formed from the letters PEPPER? 

Solution We first note that there are 6! permutations of the letters P1E1P2P3E2R 
when the 3P's and the 2E's are distinguished from one another. However, consider 
any one of these permutations-for instance, P1 P2E1 P3E2R. If we now permute the 
P's among themselves and the E's among themselves, then the resultant arrange
ment would still be of the form PPEPER. That is, all 3! 2! permutations 

P1P2E1P3E2R P1P2E2P3E1R 
P1P3E1P2E2R P1P3E2P2E1R 
P2P1E1P3E2R P2P1E2P3E1R 
P2P3E1P1E2R P2P3E2P1E1R 
P3P1E1P2E2R P3P1E2P2E1R 
P3P2E1P1E2R P3P2E2P1E1R 

are of the form PPEPER. Hence, there are 6!/(3! 2!) = 60 possible letter arrange
ments of the letters PEPPER. • 

In general, the same reasoning as that used in Example 3d shows that there are 

n! 

ni! nz! · · · nr! 

different permutations of n objects, of which ni are alike, nz are alike, ... , n, are 
alike. 

A chess tournament has 10 competitors, of which 4 are Russian, 3 are from the 
United States, 2 are from Great Britain, and 1 is from Brazil. If the tournament 
result lists just the nationalities of the players in the order in which they placed, how 
many outcomes are possible? 
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Solution There are 
10! 

4! 3! 2! 1! = 12,600 

possible outcomes. • 
How many different signals, each consisting of 9 flags hung in a line, can be made 
from a set of 4 white flags, 3 red flags, and 2 blue flags if all flags of the same color 
are identical? 

Solution There are 
_9_! __ 1 
4! 3! 2! - 260 

different signals. • 

We are often interested in determining the number of different groups of r objects 
that could be formed from a total of n objects. For instance, hQW many different 
groups of 3 could be selected from the 5 items A, B, C, D, and E? To answer this 
question, reason as follows: Since there are 5 ways to select the initial item, 4 ways to 
then select the next item, and 3 ways to select the final item, there are thus 5 · 4 · 3 
ways of selecting the group of 3 when the order in which the items are selected is 
relevant. However, since every group of 3-say, the group consisting of items A, B, 
and C-will be counted 6 times (that is, all of the permutations ABC, ACB, BAC, 
BCA, CAB, and CBA will be counted when the order of selection is relevant), it 
follows that the total number of groups that can be formed is 

5.4.3 
3.2.1= 10 

In general, as n(n - 1) · · · (n - r + 1) represents the number of different ways that 
a group of r items could be selected from n items when the order of selection is 
relevant, and as each group of r items will be counted r! times in this count, it follows 
that the number of different groups of r items that could be formed from a set of n 
items is 

n(n - 1) · · · (n - r + 1) n! 
=----

r! (n - r)! r! 

Notation and terminology 

We define (;)·for r ::5 n, by 

(n) n! 
r = (n - r)! r! 

and say that ( ~ ) (read as "n choose r") represents the number of possible 

combinations of n objects taken r at a time. t 

t. By c.onventio?, O! is defined to be 1. Thus, ( ~ ) = ( ~ ) = 1. We also take ( 7 ) to be equal to 0 when 
either 1 < 0 or 1 > n. 

5 
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Thus, ( ; ) represents the number of different groups of size r that could be 

selected from a set of n objects when the order of selection is not considered relevant. 

Equivalently, ( ; ) is the number of subsets of size r that can be chosen from 

a set of size n. Using that O! = 1, note that (:) = ( ~) = 07~! = 1, which is 

consistent with the preceding interpretation because in a set of size n there is exactly 
1 subset of size n (namely, the entire set), and exactly one subset of size 0 (namely 

the empty set). A useful convention is to define (;) equal to 0 when either r > n 

or r < 0. 

A committee of 3 is to be formed from a group of 20 people. How many different 
committees are possible? 

I . ( 20) 20 . 19 . 18 11 'bl . • So ut1on There are 3 = 3 . 2 . 1 = 40 possi e committees. 

From a group of 5 women and 7 men, how many different committees consisting of 
2 women and 3 men can be formed? What if 2 of the men are feuding and refuse to 
serve on the committee together? 

Solution As there are ( ; ) possible groups of 2 women, and ( ~ ) possible 

groups of 3 men, it follows from the basic principle that there are ( ; ) ( ~ ) = 

( 5 . 4) 7 . 6 . 5 35 'bl . . . f2 d 3 z-:-1 3 . 2 . 1 = 0 poss1 e committees cons1stmg o women an men. 

Now suppose that 2 of the men refuse to serve together. Because a total of 

( ; ) ( i ) = 5 out of the ( ~ ) = 35 possible groups of 3 men contain both of 

the feuding men, it follows that there are 35 - 5 = 30 groups that do not contain 

both of the feuding men. Because there are still ( ; ) = 10 ways to choose the 2 

women, there are 30 · 10 = 300 possible committees in this case. • 

Consider a set of n antennas of which m are defective and n - m are functional 
and assume that all of the defectives and all of the functionals are considered indis
tinguishable. How many linear orderings are there in which no two defectives are 
consecutive? 

Solution Imagine that the n - m functional antennas are lined up among them
selves. Now, if no two defectives are to be consecutive, then the spaces between the 
functional antennas must each contain at most one defective antenna. That is, in 
then - m + 1 possible positions-represented in Figure 1 by carets-between the 
n - m functional antennas, we must select m of these in which to put the 'defective 

antennas. Hence, there are ( n - : + 1 ) possible orderings in which there is at 

least one functional antenna between any two defective ones. • 
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1 = functional 

A = place for at most one defective 

Figure I No consecutive defectives. 

A useful combinatorial identity is 

(4.1) 

Equation (4.1) may be proved analytically or by the following combinatorial argu
ment: Consider a group of n objects, and fix attention on some particular one of 

these objects-call it object 1. Now, there are (; = i ) groups of size r that con

tain object 1 (since each such group is formed by selecting r - ffrom the remaining 

n - 1 objects). Also, there are ( n ~ 1 ) groups of sizer that do not contain object 

1. As there is a total of (;) groups of sizer, Equation ( 4.1) follows. 

The values ( ; ) are often referred to as binomial coefficients because of their 

prominence in the binomial theorem. 

The binomial theorem 

(4.2) 

We shall present two proofs of the binomial theorem. The first is a proof by 
mathematical induction, and the second is a proof based on combinatorial consider
ations. 

Proof of the Binomial Theorem by Induction: When n = 1, Equation ( 4.2) reduces to 

x + y = ( ~) xoy1 + ( ~) x1yo = y + x 

Assume Equation ( 4.2) for n - 1. Now, 

(x + y)n = (x + y)(x + y)n-1 

= (x + y) I: (n ~ 1 )xk~-1-k 
k=O 

7 
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Letting i = k + 1 in the first sum and i = k in the second sum, we find that 

n (n-1) .. ~(n-1) · · (X + y)n = ~ i - 1 x1yn-1 + ~ i x1yn-1 
1=1 1=0 

~,. + E [ ( 7 ~ : ) + (. ~ 1 ) ] x'y'-· + y" 

= ~ + f ( 7 ) xiyn-i + yn 
1=1 

= t ( 7 ) xiyn-i 
1=0 

where the next-to-last equality follows by Equation ( 4.1). By induction, the theorem 
is now proved. 

Combinatorial Proof of the Binomial Theorem: Consider the product 

(x1 + Y1)(x2 + Y2) · · · (Xn + Yn) 

Its expansion consists of the sum of 2n terms, each term being the product of n fac
tors. Furthermore, each of the 2n terms in the sum will contain as a factor either Xi 

or Yi for each i = 1, 2, ... , n. For example, 

Now, how many of the 2n terms in the sum will have k of the x;'s and (n - k) of 
the y;'s as factors? As each term consisting of k of the x;'s and (n - k) of the y;'s 
corresponds to a choice of a group of k from then values xi,x2, ... ,xn, there are 

( ~ ) such terms. Thus, letting Xi = x, Yi = y, i = 1, ... , n, we see that 

(x + y)n = t ( ~) xkyn-k 
k=O 

Expand (x + y)3. 

Solution 

(x + y)3 = ( ~) xOy3 + ( i) xly2 + ( ~) x2y1 + (;) x3y° 

= y3 + 3xy2 + 3x2y + x3 

How many subsets are there of a set consisting of n elements? 

Solution Since there are ( ~ ) subsets of size k, the desired answer is 

• 
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This result could also have been obtained by assigning either the number 0 or the 
number 1 to each element in the set. To each assignment of numbers, there cor
responds, in a one-to-one fashion, a subset, namely, that subset consisting of all 
elements that were assigned the value 1. As there are zn possible assignments, the 
result follows. 

Note that we have included the set consisting of 0 elements (that is, the null set) 
as a subset of the original set. Hence, the number of subsets that contain at least 1 
element is zn - 1. • 

5 Multinomial Coefficients 
In this section, we consider the following problem: A set of n distinct items is to be 
divided into r distinct groups of respective sizes ni, n1, . .. , nr, where L~=l ni = n. 
How many different divisions are possible? To answer this question, we note that 

there are ( : 1 ) possible choices for the first group; for each choice of the first group, 

there are ( n ~2 ni ) possible choices for the second group; fo~ each choice of the 

first two groups, there are ( n - ';:3 - n2 ) possible choices for the third group; and 

so on. It then follows from the generalized version of the basic counting principle 
that there are 

n! (n - ni)! (n - ni - n1 - · · · - nr-1)! 
= (n - ni)! nil (n - ni - n1)! n1! O! nr! 

n! 
=-----

n1!n2!···nr! 

possible divisions. 
Another way to see this result is to consider the n values 1, 1, ... , 1, 2, ... , 2, ... , 

r, . .. , r, where i appears ni times, for i = 1, ... , r. Every permutation of these values 
corresponds to a division of the n items into the r groups in the following manner: 
Let the permutation ii, i2 , . .• , in correspond to assigning item 1 to group ii, item 2 to 
group h, and so on. For instance, if n = 8 and if ni = 4, n1 = 3, and n3 = 1, then 
the permutation 1, 1, 2, 3, 2, 1, 2, 1 corresponds to assigning items 1, 2, 6, 8 to the first 
group, items 3, 5, 7 to the second group, and item 4 to the third group. Because every 
permutation yields a division of the items and every possible division results from 
some permutation, it follows that the number of divisions of n items into r distinct 
groups of sizes ni, n1, .. . , nr is the same as the number of permutations of n items 
of which ni are alike, and n1 are alike, ... , and nr are alike, which was shown in 

S · 3 1 n! ection to equa 1 1 ni!n2. · · ·nr. 

9 



10 

Example 
Sa 

Example 
Sb 

Example 
Sc 

Combinatorial Analysis 

Notation 

Ifni + n1 + · · · + nr = n, we define ( n ) by ni,n2, ... ,nr 

Thus, ( n ) represents the number of possible divisions of n distinct 
ni,n2, ... ,nr 

objects into r distinct groups of respective sizes ni,n2, ... ,nr. 

A police department in a small city consists of 10 officers. If the department policy is 
to have 5 of the officers patrolling the streets, 2 of the officers working full time at the 
station, and 3 of the officers on reserve at the station, how many different divisions 
of the 10 officers into the 3 groups are possible? 

Solution There are S!l~! 3 ! = 2520 possible divisions. • 
Ten children are to be divided into an A team and a B team of 5 each. The A team 
will play in one league and the B team in another. How many different divisions are 
possible? 

Solution There are 5~0~! = 252 possible divisions. • 
In order to play a game of basketball, 10 children at a playground divide themselves 
into two teams of 5 each. How many different divisions are possible? 

Solution Note that this example is different from Example Sb because now the 
order of the two teams is irrelevant. That is, there is no A or B team, but just a 
division consisting of 2 groups of 5 each. Hence, the desired answer is 

10!/(5! 5!) = 126 
2! • 

The proof of the following theorem, which generalizes the binomial theorem, is 
left as an exercise. 

The multinomial theorem 
(X1 + X2 + · · · + Xr)n = 

(ni, ... ,nr): 
( n ) xn1xn2 xn' 1 2 ... 

ni,n2, ... ,nr r 

ni + · · · + nr = n 

That is, the sum is over all nonnegative integer-valued vectors (n1, n1, . .. , nr) 
such that ni + n1 + · · · + nr = n. 

The numbers ( n ) are known as multinomial coefficients. 
n1,n2, ... ,nr . 
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In the first round of a knockout tournament involving n = 2m players, the n players 
are divided into n/2 pairs, with each of these pairs then playing a game. The losers 
of the games are eliminated while the winners go on to the next round, where the 
process is repeated until only a single player remains. Suppose we have a knockout 
tournament of 8 players. 

(a) How many possible outcomes are there for the initial round? (For instance, 
one outcome is that 1 beats 2, 3 beats 4, 5 beats 6, and 7 beats 8.) 

(b) How many outcomes of the tournament are possible, where an outcome gives 
complete information for all rounds? 

Solution One way to determine the number of possible outcomes for the initial 
round is to first determine the number of possible pairings for that round. To do so, 
note that the number of ways to divide the 8 players into a first pair, a second pair, a 

third pair, and a fourth pair is ( 2
8 

2) = 8!. Thus, the number of possible pair-
. ~ .~ 2 

ings when there is no ordering of the 4 pairs is 2~~! . For each such pairing, there are 

2 possible choices from each pair as to the winner of that game;-showing that there 

8124 81 · 1 1 f d 1 [ h h" . h are 4 41 = 41 poss1b e resu ts o roun . Anot er way to see t ts is to note t at 
2 . . 

there are (:) possible choices of the 4 winners and, for each such choice, there are 

4! ways to pair the 4 winners with the 4 losers, showing that there are 4! (:) = :: 
possible results for the first round.] 

Similarly, for each result of round 1, there are ~: possible outcomes of round 2, 

and for each of the outcomes of the first two rounds,. there are ~: possible outcomes 

of round 3. Consequently, by the generalized basic principle of counting, there are 
8! 4! 2! . 
41 21 1 ! = 8! possible outcomes of the tournament. Indeed, the same argument 

can be used to show that a knockout tournament of n = 2m players has n! possible 
outcomes. 

Knowing the preceding result, it is not difficult to come up with a more direct 
argument by showing that there is a one-to-one correspondence between the set of 
possible tournament results and the set of permutations of 1, ... , n. To obtain such 
a correspondence, rank the players as follows for any tournament result: Give the 
tournament winner rank 1, and give the final-round loser rank 2. For the two play
ers who lost in the next-to-last round, give rank 3 to the one who lost to the player 
ranked 1 and give rank 4 to the one who lost to the player ranked 2. For the four play
ers who lost in the second-to-last round, give rank 5 to the one who lost to player 
ranked 1, rank 6 to the one who lost to the player ranked 2, rank 7 to the one who 
lost to the player ranked 3, and rank 8 to the one who lost to the player ranked 4. 
Continuing on in this manner gives a rank to each player. (A more succinct descrip
tion is to give the winner of the tournament rank 1 and let the rank of a player who 
lost in a round having 2k matches be 2k plus the rank of the player who beat him, for 
k = 0, ... ,m - 1.) In this manner, the result of the tournament can be represented 
by a permutation ii, iz, . .. , in, where ii is the player who was given rank j. Because 
different tournament results give rise to different permutations, and because there is 
a tournament result for each permutation, it follows that there are the same number 
of possible tournament results as there are permutations of 1, ... , n. • 

11 
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(x1 + x2 + x3)2 = ( 2,~,0 )xixgxg + ( O,;,O )x?x~xg 

+ (o,~,2)x?xgx~+ ( 1,~,o)xixixg 
+ (1,~,1)xixgxj + (o,~, 1 )x?xixj 

=xi + x~ + x~ + 2xix2 + 2xix3 + 2x1x3 • 
* 6 The Number of Integer Solutions of Equations 

An individual has gone fishing at Lake Ticonderoga, which contains four types of 
fish: lake trout, catfish, bass, and bluefish. If we take the result of the fishing trip to 
be the numbers of each type of fish caught, let us determine the number of possible 
outcomes when a total of 10 fish are caught. To do so, note that we can denote the 
outcome of the fishing trip by the vector (x1,x2,x3,x4) where x1 is the number of 
trout that are caught, x2 is the number of catfish, x3 is the number of bass, and x4 is 
the number of bluefish. Thus, the number of possible outcomes when a total of 10 
fish are caught is the number of nonnegative vectors (x1,x2,x3,x4) that sum to 10. 

More generally, if we supposed there were r types of fish and that a total of n 
were caught then the number of possible outcomes would be the number of nonneg
ative integer-valued vectors x1, ... ,Xr such that 

x1 + x2 + ... + Xr = n (6.1) 

To compute this number, let us start by considering the number of positive integer
valued vectors x1, ... ,Xr that satisfy the preceding. To determine this number, sup
pose that we have n consecutive values zero lined up in a row: 

000 ... 00 

Note that any selection of r - 1 of then - 1 spaces between adjacent zeroes (see 
Figure 2) corresponds to a positive solution of (6.1) by letting x1 be the number of 
zeroes before the first chosen space, x2 be the number of zeroes between the first 
and second chosen space, ... , and Xn being the number of zeroes following the last 
chosen space. 

n objects 0 

Chooser - 1 of the spaces"· 

Figure 2 Number of positive solutions. 

* Asterisks denote material that is optional. 
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For instance, if we haven= 8 and r = 3, then (with the choices represented by dots) 
the choice 

0.0000.000 

corresponds to the solution x1 = l,x2 = 4,x3 = 3. As positive solutions of (6.1) 
correspond, in a one-to-one fashion, to choices of r - 1 of the adjacent spaces, it 
follows that the number of differerent positive solutions is equal to the number of 
different selections of r - 1 of the n - 1 adjacent spaces. Consequently, we have 
the following proposition. 

There are (; = ~) distinct positive integer-valued vectors (x1, x2, ... ,xr) satisfy

ing the equation 

x1 + x2 + · · · + Xr = n Xi > 0, i = 1, ... , r 

To obtain the number of nonnegative (as opposed to positive) solutions, note 
that the number of nonnegative solutions of x1 + x2 + · · · + Xr = n is the same 
as the number of positive solutions of Yl + · · · + Yr = n + r (seen by letting 
Yi = Xi + 1, i = 1, ... , r). Hence, from Proposition 6.1, we obtain the following 
proposition. -

Th ( n + r - 1 ) d" . . . 1 d ( ere are r _ 1 1stmct nonnegative mteger-va ue vectors xi,xz, ... ,Xr) 

satisfying the equation 
x1 + x2 + · · · + Xr = n 

Thus, using Proposition 6.2, we see that there are ( 1i ) = 286 possible outcomes 

when a total of 10 Lake Ticonderoga fish are caught. 

How many distinct nonnegative integer-valued solutions of x1 + x2 = 3 are possible? 

Solution There are ( 3 ~ .:. ~ 1 ) = 4 such solutions: (0, 3), (1, 2), (2, 1), (3, 0). • 

An investor has $20,000 to invest among 4 possible investments. Each investment 
must be in units of $1000. If the total $20,000 is to be invested, how many different 
investment strategies are possible? What if not all the money needs to be invested? 

Solution If we let Xi, i = 1, 2, 3, 4, denote the number of thousands invested in 
investment i, then, when all is to be invested, xi,x2,x3,x4 are integers satisfying the 
equation 

Xt + Xz + X3 + X4 = 20 Xi 2:: 0 

Hence, by Proposition 6.2, there are ( 2; ) = 1771 possible investment strategies. If 

not all of the money needs to be invested, then if we let xs denote the amount kept in 
reserve, a strategy is a nonnegative integer-valued vector (xi,x2,X3,x4,xs) satisfying 
the equation 

Xt + Xz + X3 + X4 + X5 = 20 

Hence, by Proposition 6.2, there are now ( 2
4
4 ) = 10,626 possible strategies. • 

13 
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How many terms are there in the multinomial expansion of (x1 + x2 + ... + x,)n? 

Solution 

where the sum is over all nonnegative integer-valued (n1, ... , n,) such that n1 + . · . + 

n, = n. Hence, by Proposition 6.2, there are ( n ~ ~ ~ 1 ) such terms. • 

Let us consider again Example 4c, in which we have a set of n items, of which m are 
(indistinguishable and) defective and the remaining n - mare (also indistinguish
able and) functional. Our objective is to determine the number of linear orderings 
in which no two defectives are next to each other. To determine this number, let us 
imagine that the defective items are lined up among themselves and the functional 
ones are now to be put in position. Let us denote x1 as the number of functional 
items to the left of the first defective, x2 as the number of functional items between 
the first two defectives, and so on. That is, schematically, we have 

x1 Ox2 O· · ·Xm Oxm+l 

Now, there will be at least one functional item between any pair of defectives as long 
as Xi > 0, i = 2, ... , m. Hence, the number of outcomes satisfying the condition is 
the number of vectors x1, ... ,Xm+l that satisfy the equation 

x1 + · · · + Xm+l = n - m x1 ~ 0, Xm+l ~ 0, Xi > 0, i = 2, ... , m 

But, on letting Y1 = x1 + 1,yi = Xi, i = 2, ... , m,Ym+l = Xm+i + 1, we see that 
this number is equal to the number of positive vectors {y1, ... • Ym+i) that satisfy the 
equation 

Yl + Y2 + · · · + Ym+l = n - m + 2 

Hence, by Proposition 6.1, there are ( n - : + 1 ) such outcomes, in agreement 

with the results of Example 4c. 
Suppose now that we are interested in the number of outcomes in which each 

pair of defective items is separated by at least 2 functional items. By the same rea
soning as that applied previously, this would equal the number of vectors satisfying 
the equation 

x1 + · · · + Xm+l = n - m x1 ~ 0, Xm+l ~ 0, Xi ~ 2, i = 2, ... , m 

Upon letting Y1 = x1 + l,yi = Xi - 1, i = 2, ... , m,Ym+l = Xm+1 + 1, we see that 
this is the same as the number of positive solutions of the equation 

Yl + · · · + Ym+l = n - 2m + 3 

( n-2m+2) Hence, from Proposition 6.1, there are m such outcomes. • 
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Summary 

The basic principle of counting states that if an experiment 
consisting of two phases is such that there are n possible 
outcomes of phase 1 and, for each of these n outcomes, 
there are m possible outcomes of phase 2, then there are 
nm possible outcomes of the experiment. 

There are n! = n(n - 1) · · · 3 · 2 · 1 possible linear 
orderings of n items. The quantity O! is defined to equal 1. 

Let 

(n) n! 
i = (n - i)! i! 

binomial coefficient because of its prominence in the bino
mial theorem, which states that 

For nonnegative integers ni, ... , nr summing to n, 

when O s i s n, and let it equal o otherwise. This quan- is the number of divisions of n items into r distinct 
tity represents the number of different subgroups of size i nonoverlapping subgroups of sizes ni, n2 ... , nr. These 
that can be chosen from a set of size n. It is often called a quantities are called multinomial coefficients. 

Problems 

I. (a) How many different 7-place license plates are possi
ble if the first 2 places are for letters and the other 5 for 
numbers? 
(b) Repeat part (a) under the assumption that no let
ter or number can be repeated in a single license 
plate. 

2. How many outcome sequences are possible when a die 
is rolled four times, where we say, for instance, that the 
outcome is 3, 4, 3, 1 if the first roll landed on 3, the second 
on 4, the third on 3, and the fourth on 1? 

3. Twenty workers are to be assigned to 20 different jobs, 
one to each job. How many different assignments are pos
sible? 

4, John, Jim, Jay, and Jack have formed a band consist
ing of 4 instruments. If each of the boys can play all 4 
instruments, how many different arrangements are possi
ble? What if John and Jim can play all 4 instruments, but 
Jay and Jack can each play only piano and drums? 

S. For years, telephone area codes in the United States and 
Canada consisted of a sequence of three digits. The first 
digit was an integer between 2 and 9, the second digit was 
either 0 or 1, and the third digit was any integer from 1 to 
9. How many area codes were possible? How many area 
codes starting with a 4 were possible? 

6. A well-known nursery rhyme starts as follows: 
''As I was going to St. Ives 
I met a man with 7 wives. 
Each wife had 7 sacks. 
Each sack had 7 cats. 
Each cat had 7 kittens ... " 
How many kittens did the traveler meet? 

7. (a) In how many ways can 3 boys and 3 girls sit in a row? 
(b) In how many ways can 3 boys and 3 girls sit in a row if 
the boys and the girls are each to sit together? 
(c) In how many ways if only the boys must sit together? 
( d) In how many ways if no two people of the same sex are 
allowed to sit together? 

8. How many different letter arrangements can be made 
from the letters 

(a) Fluke? 
(b) Propose? 
(c) Mississippi? 
(d) Arrange? 

9. A child has 12 blocks, of which 6 are black, 4 are red, 1 
is white, and 1 is blue. If the child puts the blocks in a line, 
how many arrangements are possible? 

IO. In how many ways can 8 people be seated in a row if 

(a) there are no restrictions on the seating arrangement? 
(b) persons A and B must sit next to each other? 
( c) there are 4 men and 4 women and no 2 men or 2 women 
can sit next to each other? 
(d) there are 5 men and they must sit next to one another? 
(e) there are 4 married couples and each couple must sit 
together? 

11. In how many ways can 3 novels, 2 mathematics books, 
and 1 chemistry book be arranged on a bookshelf if 

(a) the books can be arranged in any order? 
(b) the mathematics books must be together and the nov
els must be together? 
(c) the novels must be together, but the other books can 
be arranged in any order? 

15 
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12. Five separate awards (best scholarship, best leadership 
qualities, and so on) are to be presented to selected stu
dents from a class of 30. How many different outcomes 
are possible if 

(a) a student can receive any number of awards? 
(b) each student can receive at most 1 award? 

13. Consider a group of 20 people. If everyone shakes 
hands with everyone else, how many handshakes take 
place? 

14. How many 5-card poker hands are there? 
A 

22. In Problem 21, how many different paths are there 
IS. A dance class consists of 22 students, of which 10 are from A to B that go through the point circled in the fol
women and 12 are men. If 5 men and 5 women are to be lowing lattice? 
chosen and then paired off, how many results are possible? B 

16. A student has to sell 2 books from a collection of 
6 math, 7 science, and 4 economics books. How many 
choices are possible if 

(a) both books are to be on the same subject? 
(b) the books are to be on different subjects? 

17. Seven different gifts are to be distributed among 10 
children. How many distinct results are possible if no child 
is to receive more than one gift? 

18. A committee of 7, consisting of 2 Republicans, 2 
Democrats, and 3 Independents, is to be chosen from a 
group of 5 Republicans, 6 Democrats, and 4 Independents. 
How many committees are possible? 

19. From a group of 8 women and 6 men, a committee con
sisting of 3 men and-3 women is to be formed. How many 
different committees are possible if 

(a) 2 of the men refuse to serve together? 
(b) 2 of the women refuse to serve together? 
(c) 1 man and 1 woman refuse to serve together? 

A 

23. A psychology laboratory conducting dream research 
contains 3 rooms, with 2 beds in each room. If 3 sets of 
identical twins are to be assigned to these 6 beds so that 
each set of twins sleeps in different beds in the same room, 
how many assignments are possible? 

24. Expand (3x2 + y)5• 

25. The game of bridge is played by 4 players, each of 
whom is dealt 13 cards. How many bridge deals are pos
sible? 

20. A person has 8 friends, of whom 5 will be invited to a 
party. 27. If 12 people are to be divided into 3 committees of 

respective sizes 3, 4, and 5, how many divisions are pos
sible? (a) How many choices are there if2ofthe friends are feud

ing and will not attend together? 
(b) How many choices if 2 of the friends will only attend 
together? 

21. Consider the grid of points shown at the top of the 
next column. Suppose that, starting at the point labeled 
A, you can go one step up or one step to the right at each 
move. This procedure is continued until the point labeled 
B is reached. How many different paths from A to B are 
possible? 
Hint: Note that to reach B from A, you must take 4 steps 
to the right and 3 steps upward. 

28. If 8 new teachers are to be divided among 4 schools, 
how many divisions are possible? What if each school must 
receive 2 teachers? 

29. Ten weight lifters are competing in a team weight
lifting contest. Of the lifters, 3 are from the United States, 
4 are from Russia, 2 are from China, and 1 is from Canada. 
If the scoring takes account of the countries that the lifters 
represent, but not their individual identities, how many 
different outcomes are possible from the point of view 
of scores? How many different outcomes correspond to 
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results in which the United States has 1 competitor in the 
top three and 2 in the bottom three? 

30. Delegates from 10 countries, including Russia, France, 
England, and the United States, are to be seated in a row. 
How many different seating arrangements are possible if 
the French and English delegates are to be seated next to 
each other and the Russian and U.S. delegates are not to 
be next to each other? 

• 33. We have $20,000 that must be invested among 4 pos
sible opportunities. Each investment must be integral in 
units of $1000, and there are minimal investments that 
need to be made if one is to invest in these opportuni
ties. The minimal investments are $2000, $2000, $3000, and 
$4000. How many different investment strategies are avail
able if 

(a) an investment must be made in each opportunity? 
(b) investments must be made in at least 3 of the 4 oppor-

031. If 8 identical blackboards are to be divided among 4 tunities? 
schools, how many divisions are possible? How many if 
each school must receive at least 1 blackboard? "34, Suppose that 10 fish are caught at a lake that contains 

0 32. An elevator starts at the basement with 8 people (not 
including the elevator operator) and discharges them all 
by the time it reaches the top floor, number 6. In how many 
ways could the operator have perceived the people leaving 
the elevator if all people look alike to him? What if the 8 
people consisted of 5 men and 3 women and the operator 
could tell a man from a woman? 

Theoretical Exercises 

5 distinct types of fish. 

(a) How many different outcomes are possible, where an 
outcome specifies the numbers of caught fish of each of the 
5 types? 
(b) How many outcomes are possible when 3 of the 10 fish 
caught are trout? 
( c) How many when at least 2 of the 10 are trout? 

I. Prove the generalized version of the basic counting Hint: Consider a group of n men and m women. How 
principle. many groups of size r are possible? 

2. Two experiments are to be performed. The first can 
result in any one of m possible outcomes. If the first exper
iment results in outcome i, then the second experiment 
can result in any of ni possible outcomes, i = 1, 2, ... ,m. 
What is the number of possible outcomes of the two exper
iments? 

3. In how many ways can r objects be selected from a set of 
n objects if the order of selection is considered relevant? 

4, There are ( ~ ) different linear arrangements of n balls 

of which rare black and n - r are white. Give a combina
torial explanation of this fact. 

S. Determine the number of vectors (x1, ... ,xn). such that 
each Xi is either 0 or 1 and 

n 

LXi;;:: k 

i=l 

6. How many vectors x1, ... , Xk are there for which each Xi 

is a positive integer such that 1 s Xi :S n and x1 < xz < 
... < Xk? 

7. Give an analytic proof of Equation ( 4.1). 

8. Prove that 

9. Use Theoretical Exercise 8 to prove that 

I 0. From a group of n people, suppose that we want to 
choose a committee of k, k s n, one of whom is to be des
ignated as chairperson. 

(a) By focusing first on the choice of the committee and 

then on the choice of the chair, argue that there are ( ~ ) k 

possible choices. 
(b) By focusing first on the choice of the nonchair 
committee members and then on the choice of the chair, 

argue that there are ( k : 1 ) (n - k + 1) possible 

choices. 
(c) By focusing first on the choice of the chair and then 
on the choice of the other committee members, argue that 

there are n ( ~ = ~ ) possible choices . 

(d) Conclude from parts (a), (b), and (c) that 

k ( ~ ) = (n - k + 1) ( k : 1 ) = n ( ~ = ~ ) 
(e) Use the factorial definition of ( ~) to verify the iden

tity in part ( d). 

17 
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11. The following identity is known as Fermat's combina
torial identity: 

Give a combinatorial argument (no computations are 
needed) to establish this identity. 
Hint: Consider the set of numbers 1 through n. How many 
subsets of size k have i as their highest numbered member? 

12. Consider the following combinatorial identity: 

tk ( ~) = n . 2n-1 

k=l 

(a) Present a combinatorial argument for this identity by 
considering a set of n people and determining, in two ways, 
the number of possible selections of a committee of any 

'size and a chairperson for the committee. 
Hint: 

(i) How many possible selections are there of a commit
tee of size k and its chairperson? 

(ii) How many possible selections are there of a chair
person and the other committee members? 

(b) Verify the following identity for n = 1,2,3,4,5: 

t ( ~) k2 = 2n-2n(n + 1) 
k=l 

For a combinatorial proof of the preceding, consider a set 
of n people and argue that both sides of the identity rep
resent the number of different selections of a committee, 
its chairperson, and its secretary (possibly the same as the 
chairperson). 
Hint: 

(i) How many different selections result in the commit
tee containing exactly k people? 

(ii) How many different selections are there in which 
the chairperson and the secretary are the same? 
(ANSWER: n2n-l .) 

(iii) How many different selections result in the chairper
son and the secretary being different? 

(c) Now argue that 

t ( ~) k3 = 2n-3n2(n + 3) 

k=l 

13. Show that, for n > 0, 

Hint: Use the binomial theorem. 

14. From a set of n people, a committee of size j is to be 
chosen, and from this committee, a subcommittee of size 
i, i s j, is also to be chosen. 

(a) Derive a combinatorial identity by computing, in two 
ways, the number of possible choices of the committee and 
subcommittee-first by supposing that the committee is 
chosen first and then the subcommittee is chosen, and sec
ond by supposing that the subcommittee is chosen first and 
then the remaining members of the committee are chosen. 
(b) Use part (a) to prove the following combinatorial 
identity: 

t ( 7 ) ({ ) = ( 7 ) 2n-i i s n 
}=I 

(c) Use part (a) and Theoretical Exercise 13 to show that 

IS. Let Hk(n) be the number of vectors x1, ... ,Xk for 
which each Xi is a positive integer satisfying 1 s Xi s n 
and X1 :S Xz :S ••• :S Xk· 

(a) Without any computations, argue that 

Hl(n) = n 
n 

Hk(n) = l:,Hk-1(j) k > 1 
j=l 

Hint: How many vectors are there in which Xk = j? 
(b) Use the preceding recursion to compute HJ(5). 
Hint: First compute Hz(n) for n = 1, 2, 3, 4, 5. 

16. Consider a tournament of n contestants in which the 
outcome is an ordering of these contestants, with ties 
allowed. That is, the outcome partitions the players into 
groups, with the first group consisting of the players who 
tied for first place, the next group being those who tied 
for the next-best position, and so on. Let N(n) denote 
the number of different possible outcomes. For instance, 
N(2) = 3, since, in a tournament with 2 contestants, player 
1 could be uniquely first, player 2 could be uniquely first, 
or they could tie for first. 

(a) List all the possible outcomes when n = 3. 
(b) With N(O) defined to equal 1, argue, without any com
putations, that 

N(n) = t ( 7) N(n - i) 
1=1 

Hint: How many outcomes are there in which i players tie 
for last place? 
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(c) Show that the formula of part (b) is equivalent to the 
following: 

n-1 ( ) 
N(n) = ?= 7 N(l) 

1=0 

19. Prove the multinomial theorem. 

*20. In how many ways can n identical balls be distributed 
into r urns so that the ith urn contains at least mi balls, for 
each i = 1, ... , r? Assume that n ;;::: L:r=l mi. 

21. Argue that there are exactly k n _ r + k (d) Use the recursion to find N(3) and N(4). 

17. Present a combinatorial explanation 

* (r)( n-1 ) 

of why solutions of 

(; ) = ( r, n n - r). 

+ ... 

Hint: Use an argument similar to the one used to establish 
Equation (4.1). 

Self-Test Problems and Exercises 

I. How many different linear arrangements are there of 
the letters A, B, C, D, E, F for which 
(a) A and B are next to each other? 
(b) A is before B? 
(c) A is before Band Bis before C? 
(d) A is before Band C is before D? 
(e) A and Bare next to each other and C and Dare also 
next to each other? 
(f) Eis not last in line? 
2. If 4 Americans, 3 French people, and 3 British people 
are to be seated in a row, how many seating arrangements 
are possible when people of the same nationality must sit 
next to each other? 
3. A president, treasurer, and secretary, all different, are to 
be chosen from a club consisting of 10 people. How many 
different choices of officers are possible if 
(a) there are no restrictions? 
(b) A and B will not serve together? 
(c) C and D will serve together or not at all? 
(d) E must be an officer? 
(e) F will serve only if he is president? 

4, A student is to answer 7 out of 10 questions in an exami
nation. How many choices has she? How many if she must 
answer at least 3 of the first 5 questions? 

5. In how many ways can a man divide 7 gifts among his 3 
children if the eldest is to receive 3 gifts and the others 2 
each? 

X1 + X2 + . . . + Xr = n 

for which exactly k of the Xi are equal to 0. 

*22. Consider a function f(x1, ... ,xn) of n variables. How 
many different partial derivatives of order r does f 
possess? 

*23, Determine the number of vectors (xi, ... ,xn) such that 
each Xi is a nonnegative integer and 

6. How many different 7-place license plates are possible 
when 3 of the entries are letters and 4 are digits? Assume 
that repetition of letters and numbers is allowed and that 
there is no restriction on where the letters or numbers can 
be placed. 

7. Give a combinatorial explanation of the identity 

a. Consider n-digit numbers where each digit is one of the 
10 integers 0, 1, ... , 9. How many such numbers are there 
for which 
(a) no two consecutive digits are equal? 
(b) 0 appears as a digit a total of i times, i = 0, ... ,n? 

9. Consider three classes, each consisting of n students. 
From this group of 3n students, a group of 3 students is 
to be chosen. 
(a) How many choices are possible? 
(b) How many choices are there in which all 3 students are 
in the same class? 
(c) How many choices are there in which 2 of the 3 stu
dents are in the same class and the other student is in a 
different class? 
(d) How many choices are there in which all 3 students are 
in different classes? 
(e) Using the results of parts (a) through (d), write a com
binatorial identity. 

19 
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IO. How many 5-digit numbers can be formed from the 16. How many subsets of size 4 of the set S = {1, 2, ... , 20} 
integers 1, 2, ... , 9 if no digit can appear more than twice? contain at least one of the elements 1, 2, 3, 4, 5? 
(For instance, 41434 is not allowed.) 

11. From 10 married couples, we want to select a group of 
6 people that is not allowed to contain a married couple. 
(a) How many choices are there? 
(b) How many choices are there if the group must also 
consist of 3 men and 3 women? 

12. A committee of 6 people is to be chosen from a group 
consisting of 7 men and 8 women. If the committee must 
consist of at least 3 women and at least 2 men, how many 
different committees are possible? 

* 13. An art collection on auction consisted of 4 Dalis, 5 van 
Goghs, and 6 Picassos. At the auction were 5 art collectors. 
If a reporter noted only the number of Dalis, van Goghs, 
and Picassos acquired by each collector, how many differ
ent results could have been recorded if all of the works 
'were sold? 

* 14. Determine the number of vectors (x1, ... , Xn) such that 
each x; is a positive integer and 

wherek ~ n. 

IS. A total of n students are enrolled in a review course 
for the actuarial examination in probability. The posted 
results of the examination will list the names of those who 
passed, in decreasing order of their scores. For instance, 
the posted result will be "Brown, Cho" if Brown and Cho 
are the only ones to pass, with Brown receiving the higher 
score. Assuming that all scores are distinct (no ties), how 
many posted results are possible? 

Answers to Selected Problems 

I 7. Give an analytic verification of 

(;) = (~) + k(n - k) + (n ; k)• 1 s k s n 

Now, give a combinatorial argument for this identity. 

18. In a certain community, there are 3 families consisting 
of a single parent and 1 child, 3 families consisting of a sin
gle parent and 2 children, 5 families consisting of 2 parents 
and a single child, 7 families consisting of 2 parents and 2 
children, and 6 families consisting of 2 parents and 3 chil
dren. If a parent and child from the same family are to be 
chosen, how many possible choices are there? 

19. If there are no restrictions on where the digits and let
ters are placed, how many 8-place license plates consisting 
of 5 letters and 3 digits are possible if no repetitions of 
letters or digits are allowed? What if the 3 digits must be 
consecutive? 

20. Verify that the equality 

when n = 3, r = 2, and then show that it always valid. 
(The sum is over all vectors of r nonnegative integer val
ues whose sum is n.) 
Hint: How many different n letter sequences can be 
formed from the first r letters of the alphabet? How many 
of them use letter i of the alphabet a total of x; times for 
each i = 1,. .. , r? 

L 67,600,000; 19,656,000 2. 1296 4. 24; 4 5. 144; 18. 600 19. 896; 1000; 910 20. 36; 26 2L 35 22. 18 
18 6. 2401 7. 720; 72; 144; 72 8. 120; 1260; 23. 48 25. 52!/(13!)4 27. 27,720 28. 65,536; 2520 
34,650 9. 27,720 10. 40,320; 10,080; 1152; 2880; 29. 12,600; 945 30. 564,480 31. 165; 35 32. 1287; 
384 1L 720; 72; 144 12. 24,300,000; 17,100,720 14,112 33. 220; 572 
13. 190 14. 2,598,960 16. 42; 94 17. 604,800 

Solutions to Self-Test Problems and Exercises 

I. (a) There are 4! different orderings of the letters C, D, so on. Hence, there are 2 . 5 . 4! = 240 arrangements. 
E, F. For each of these orderings, we can obtain an order- Another way of solving this problem is to imagine that B 
ing with A and B next to each other by inserting A and B, is glued to the back of A. Then there are 5! orderings in 
either in the order A, B or in the order B, A, in any of 5 which A is immediately before B. Since there are also 5! 
places, namely, either before the first letter of the permu- orderings in which B is immediately before A, we again 
tation of C, D, E, F, or between the first and second, and obtain a total of 2 . 5 ! = 240 different arrangements. 
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(b) There are 6! = 720 possible arrangements, and since 
there are as many with A before B as with B before A, 
there are 360 arrangements. 
(c) Of the 720 possible arrangements, there are as many 
that have A before B before C as have any of the 3! possi
ble orderings of A, B, and C. Hence, there are 720/6 = 120 
possible orderings. 
( d) Of the 360 arrangements that have A before B, half 
will have C before D and half D before C. Hence, there 
are 180 arrangements having A before B and C before D. 
( e) Gluing B to the back of A and D to the back of C yields 
4! = 24 different orderings in which B immediately follows 
A and D immediately follows C. Since the order of A and 
B and of C and D can be reversed, there are 4 · 24 = 96 
different arrangements. 
(f) There are 5! orderings in which Eis last. Hence, there 
are 6! - 5! = 600 orderings in which Eis not last. 

2. 3! 4! 3! 3!, since there are 3! possible orderings of coun
tries and then the countrymen must be ordered. 

3. (a) 10 · 9 · 8 = 720 
(b) 8 · 7 · 6 + 2 · 3 · 8 · 7 = 672. The result of part (b) fol
lows because there are 8 · 7 · 6 choices not including A or 
B and there are 3 · 8 · 7 choices in which a specified one 
of A and B, but not the other, serves. The latter follows 
because the serving member of the pair can be assigned to 
any of the 3 offices, the next position can then be filled by 
any of the other 8 people, and the final position by any of 
the remaining 7. 
(c) 8 · 7 · 6 + 3 · 2 · 8 = 384. 
(d) 3 . 9 . 8 = 216. 
(e) 9 · 8 · 7 + 9 · 8 = 576. 

4. (a)(~) 

(b) (n (~) + (~) (n + G) (n 
s. (3.~,2) = 210 

6. There are G) = 35 choices of the three places for 

the letters. For each choice, there are (26)3(10)4 different 
license plates. Hence, altogether there are 35 · (26)3 · (10)4 

different plates. 

7. Any choice of r of the n items is equivalent to a choice 
of n - r, namely, those items not selected. 

8. (a) 10 · 9 ·.9 ... 9=10. 9n-l 

(b) ( 7) gn-i, since there are ( 7) choices of the i places to 

put the zeroes and then each of the other n - i positions 
can be any of the digits 1, ... , 9. 

9. (a) (3;) 
(b)3(~) 

(c) (i) (i) (;) (~) = 3n2(n - 1) 

(d) n3 

(e) (3;) = 3 (~) + 3n2(n - 1) + n3 

I 0. There are 9 · 8 · 7 · 6 · 5 numbers in which no 

digit is repeated. There are (n . 8 . 7 . 6 numbers in 

which only one specified digit appears twice, so there are 

9 ( ~) · 8 · 7 · 6 numbers in which only a single digit 

appears twice. There are 7 · ~ numbers in which two 

specified digits appear twice, so there are G) 7 · ~ num

bers in which two digits appear twice. Thus, the answer is 

9. 8. 7. 6. 5 + 9(5). 8. 7. 6 + (9)1. ~ 
2 2 2!2! 

11. (a) We can regard this as a seven-stage experiment. 
First choose the 6 married couples that have a represen
tative in the group, and then select one of the members of 
each of these couples. By the generalized basic principle of 
counting, there are (1<,°)26 different choices. 
(b) First select the 6 married couples that have a represen
tative in the group, and then select the 3 of those co~les 
that are to contribute a man. Hence, there are {1~) (3) = 
~ different choices. Another way to solve this is to first 
select 3 men and then select 3 women not related to the 
selected men. This shows that there are (1~) G) = 3f3%1 
different choices. 

12. (~) G) + (:) G) = 3430. The first term' gives the 

number of committees that have 3 women and 3 men; the 
second gives the number that have 4 women and 2 men. 

13. (number of solutions of x1 + · · · + xs = 4) (number 
of solutions of x1 + · · · + xs = 5) (number of solutions of 

X1 + · · · + X5 = 6) = (!) (~) (1~). 
14. Since there are ( ! -=_ ; ) positive vectors whose 

k (. - 1) sum is j, there must be ,E ~ _ 1 such vectors. But 
J=n 

( ! -=_ ; ) is the number of subsets of size n from the 
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set of numbers {1, ... , k} in which j is the largest ele

ment in the subset. Consequently, jE ( ~ -=_ i) is just 

the total number of subsets of size n from a set of 
size k, showing that the preceding answer is equal 

to(~). 
IS. Let us first determine the number of different results 

in which k people pass. Because there are ( ~) different 

groups of size k and k! possible orderings of their scores, 

it follows that there are ( ~) k! possible results in which 

k people pass. Consequently, there are k~O ( ~) k! possible 

results. 

16. The number of subsets of size 4 is (22) = 4845. Because 
the number of these that contain none of the first five ele
ments is (~) = 1365, the number that contain at least one 
is 3480. Another way to solve this problem is to note that 
there are G) a~i) that contain exactly i of the first five ele
ments and sum this for i = 1, 2, 3, 4. 

17. Multiplying both sides by 2, we must show that 

n(n - 1) = k(k - 1) + 2k(n - k) + (n - k)(n - k - 1) 

This follows because the right side is equal to 

k2(1 - 2 + 1) + k(- l + 2n - n - n + 1) + n(n - 1) 

For a combinatorial argument, consider a group of n items 
and a subgroup of k of the n items. Then (~) is the number 

of subsets of size 2 that contain 2 items from the subgroup 
of size k, k(n - k) is the number that contain 1 item 
from the subgroup, and (n2'J is the number that contain 
0 items from the subgroup. Adding these terms gives the 
total number of subgroups of size 2, namely, (~). 

18. There are 3 choices that can be made from families 
consisting of a single parent and 1 child; there are 3 · 1 · 2 = 
6 choices that can be made from families consisting of a 
single parent and 2 children; there are 5 · 2 · 1 = 10 choices 
that can be made from families consisting of 2 parents and 
a single child; there are 7 · 2 · 2 = 28 choices that can be 
made from families consisting of 2 parents and 2 children; 
there ate 6 · 2 · 3 = 36 choices that can be made from fami
lies consisting of 2 parents and 3 children. Hence, there are 
83 possible choices. 

19. First choose the 3 positions for the digits, and then put 
in the letters and digits. Thus, there are ~) · 26 · 25 · 
24 · 23 · 22 · 10 · 9 · 8 different plates. If the digits must 
be consecutive, then there are 6 possible positions for the 
digits, showing that there are now 6 · 26 · 25 · 24 · 23 · 
22 · 10 · 9 · 8 different plates. 

20. There are r1 different n letter sequences that can be 
formed using the first r letters of the alphabet. For given 
nonnegative integers x1, .. . , x, such that L:?=l Xi = r, the 
number of the different sequences that use letter i exactly 
Xi times for each i = 1, ... , n, is the number of permu
tations of n values, of which Xi are equal to i for each 
i = 1, ... , r; which is equal to xi t:x,!. As each n letter 
sequence is of exactly one of the preceding types, the result 
follows. 
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Introduction 
In this chapter, we introduce the concept of the probability of an event and then 
show how probabilities can be computed in certain situations. As a preliminary, 
however, we need to discuss the concept of the sample space and the events of an 
experiment. 

2 Sample Space and Events 
Consider an experiment whose outcome is not predictable with certainty. However, 
although the outcome of the experiment will not be known in advance, let us suppose 
that the set of all possible outcomes is known. This set of all possible outcomes of 
an experiment is known as the sample space of the experiment and is denoted by S. 
Following are some examples: 

1. If the outcome of an experiment consists of the determination of the sex of a 
newborn child, then 

s = {g,b} 

where the outcome g means that the child is a girl and b that it is a boy. 
2. If the outcome of an experiment is the order of finish in a race among the 7 

horses having post positions 1, 2, 3, 4, 5, 6, and 7, then 

S ={all 7! permutations of (l,2,3,4,5,6, 7)} 

The outcome (2, 3, 1, 6, 5, 4, 7) means, for instance, that the number 2 horse 
comes in first, then the number 3 horse, then the number 1 horse, and so on. 

3. If the experiment consists of flipping two coins, then the sample space consists 
of the following four points: 

s = {(H,H), (H, n. (T,H),(T, nl 

From Chapter 2 of A First Course in Probability, Ninth Edition. Sheldon Ross. 
Copyright © 2014 by Pearson Education, Inc. All rights reserved. 
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The outcome will be (H, H) if both coins are heads, (H, T) if the first coin is 
heads and the second tails, (T, H) if the first is tails and the second heads, and 
( T, T) if both coins are tails. 

4. If the experiment consists of tossing two dice, then the sample space consists 
of the 36 points 

s = {(i, ;): i, j = 1, 2, 3, 4, 5, 6} 

where the outcome (i, j) is said to occur if i appears on the leftmost die and j 
on the other die. 

5. If the experiment consists of measuring (in hours) the lifetime of a transistor, 
then the sample space consists of all nonnegative real numbers; that is, 

S = {x: 0 :S x < oo} 

Any subset E of the sample space is known as an event. In other words, an ev~nt 
is a set consisting of possible outcomes of the experiment. If the outcome of the 
experiment is contained in E, then we say that E has occurred. Following are some 
examples of events. 

In the preceding Example 1, if E = {g}, then Eis the event that the child is a 
girl. Similarly, if F = {b}, then Fis the event that the child is a boy. 

In Example 2, if 

E = {all outcomes in S starting with a 3} 

then E is the event that horse 3 wins the race. 
In Example 3, if E = { (H, H), (H, T) }, then Eis the event that a head appears 

on the first coin. 
In Example4, if E = {(1,6),(2,5),(3,4),(4,3),(5,2),(6,l)}, then Eis the event 

that the sum of the dice equals 7. 
In Example 5, if E = {x: 0 s x s 5}, then Eis the event that the transistor does 

not last longer than 5 hours. 
For any two events E and F of a sample space S, we define the new event E U F 

to consist of all outcomes that are either in E or in F or in both E and F. That is, the 
event E u F will occur if either E or F occurs. For instance, in Example 1, if E = {g} 
is the event that the child is a girl and F = {b} is the event that the child is a boy, 
then 

Eu F = {g,b} 

is the whole sample space S. In Example 3, if E = { (H, H), (H, T)} is the event that 
the first coin lands heads, and F = { (T, H), (H, H)} is the event that the second coin 
lands heads, then 

EU F= {(H,H),(H,T),(T,H)} 

is the event that at least one of the coins lands heads and thus will occur provided 
that both coins do not land tails. 

The event E u Fis called the union of the event E and the event F. 
Similarly, for any two events E and F, we may also define the new event EF, 

called the intersection of E and F, to consist of all outcomes that are both in E and 
in F. That is, the event EF (sometimes written E n F) will occur only if b.oth E and 
F occur. For instance, in Example 3, if E = {(H,H), (H, T), (T,H)} is the event that 
at least 1 head occurs and F = { (H, n, (T, H), (T, T)} is the event that at least 1 tail 
occurs, then 

EF = {(H, T), (T,H)} 
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is the event that exactly 1 head and 1 tail occur. In Example 4, if E = { (1, 6), (2, 5), 
(3, 4), (4, 3), (5, 2), (6, 1)} is the event that the sum of the dice is 7 and F = { (1, 5), (2, 4), 
(3, 3), (4, 2), (5, 1)} is the event that the sum is 6, then the event EF does not contain 
any outcomes and hence could not occur. To give such an event a name, we shall refer 
to it as the null event and denote it by 0. (That is, 0 refers to the event consisting of 
no outcomes.) If EF = 0, then E and Fare said to be mutually exclusive. 

We define unions and intersections of more than two events in a similar manner. 
00 

If Ei, Ez, ... are events, then the union of these events, denoted by LJ En, is defined 
n=l 

to be that event that consists of all outcomes that are in En for at least one value 
00 

of n = 1, 2, .... Similarly, the intersection of the events En, denoted by n En, is 
n=1 

defined to be the event consisting of those outcomes that are in all of the events 
En,n = 1,2, . . . . 

Finally, for any event E, we define the new event Ee, referred to as the com
plement of E, to consist of all outcomes in the sample space S that are not in E. 
That is, £C will occur if and only if E does not occur. In Example 4, if event E = 
{ (1, 6), (2, 5), (3, 4), ( 4, 3), (5, 2), (6, 1)}, then Ee will occur when the sum of the dice 
does not equal 7. Note that because the experiment must result in some outcome, it 
follows that SC= 0. -

For any two events E and F, if all of the outcomes in E are also in F, then we 
say that Eis contained in F, or Eis a subset of F, and write E C F (or equivalently, 
F ::J E, which we sometimes say as Fis a superset of E). Thus, if E C F, then the 
occurrence of E implies the occurrence of F. If E C F and F C E, we say that E 
and F are equal and write E = F. 

A graphical representation that is useful for illustrating logical relations among 
events is the Venn diagram. The sample space S is represented as consisting of 
all the outcomes in a large rectangle, and the events E, F, G, .. . are represented 
as consisting of all the outcomes in given circles within the rectangle. Events of 
interest can then be indicated by shading appropriate regions of the diagram. For 
instance, in the three Venn diagrams shown in Figure 1, the shaded areas represent, 

s s 

(a) Shaded region: E U F. (b) Shaded region: EF. 

s 

0 
(c) Shaded region: Ee. 

Figure I Venn diagrams. 
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s 

Figure 2 E c F. 

respectively, the events E U F, EF, and E!. The Venn diagram in Figure 2 indicates 
that EC F. 

The operations of forming unions, intersections, and complements of events 
obey certain rules similar to the rules of algebra. We list a few of these rules: 

Commutative laws EUF=FUE EF=FE 

Associative laws (EUF) UG =EU (FU G) (EF)G = E(FG) 

Distributive laws (EUF)G = EGUFG EFUG = (EUG)(FUG) 

These relations are verified by showing that any outcome that is contained in the 
event on the left side of the equality sign is also contained in the event on the 
right side, and vice versa. One way of showing this is by means of Venn diagrams. 
For instance, the distributive law may be verified by the sequence of diagrams in 
Figure 3. 

(a) Shaded region: EG. (b) Shaded region: FG. 

(c) Shaded region: (EU F)G. 

Figure 3 (EU F)G = EG U FG. 
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The following useful relationships among the three basic operations of forming 
unions, intersections, and complements are known as DeMorgan's laws: 

For instance, for two events E and F, DeMorgan's laws state that 

(E U Ff= p;cpc and (EFf = p;c U ¥ 

which can be easily proven by using Venn diagrams (see Theoretical Exercise 7). 
To prove DeMorgan's laws for general n, suppose first that xis an outcome of 

(i9i Ei) c. Then x is not contained in i9i Ei, which means that x is not contained 

in any of the events Ei, i = 1, 2, ... , n, implying that x is contained in E'f for all 
n 

i = 1, 2, ... , n and thus is contained in n E'j. To go the other way, suppose that x is 
i=l 

n 
an outcome of n E'j. Then xis contained in E'j for all i = 1,2, ... ,n, which means 

i=l 
that xis not contained in Ei for any i = 1, 2, ... , n, implying that xis not contained 

in y Ei, in turn implying that x is contained in ( y Ei) c. This proves the first of 

DeMorgan's laws. 
To prove the second of DeMorgan's laws, we use the first law to obtain 

which, since (£Cf = E, is equivalent to 

Taking complements of both sides of the preceding equation yields the result we 
seek, namely, 

3 Axioms of Probability 
One way of defining the probability of an event is in terms of its relative frequency. 
Such a definition usually goes as follows: We suppose that an experiment, whose 
sample space is S, is repeatedly performed under exactly the same conditions. For 
each event E of the sample space S, we define n(E) to be the number of times in 
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the first n repetitions of the experiment that the event E occurs. Then P(E), the 
probability of the event E, is defined as 

PE) 1. n(E) 
( = Im -

n-+oo n 

That is, P(E) is defined as the (limiting) proportion of time that E occurs. It is thus 
the limiting relative frequency of E. 

Although the preceding definition is certainly intuitively pleasing and should 
always be kept in mind by the reader, it possesses a serious drawback: How do we 
know that n(E)ln will converge to some constant limiting value that will be the same 
for each possible sequence of repetitions of the experiment? For example, suppose 
that the experiment to be repeatedly performed consists of flipping a coin. How do 
we know that the proportion of heads obtained in the first n flips will converge to 
some value as n gets large? Also, even if it does converge to some value, how do we 
know that, if the experiment is repeatedly performed a second time, we shall obtain 
the same limiting proportion of heads? 

Proponents of the relative frequency definition of probability usually answer 
this objection by stating that the convergence of n(E)ln to a constant limiting value 
is an assumption, or an axiom, of the system. However, to assume that n(E)ln will 
necessarily converge to some constant value seems to be an extraordinarily compli
cated assumption. For, although we might indeed hope that such a constant limiting 
frequency exists, it does not at all seem to be a priori evident that this need be the 
case. In fact, would it not be more reasonable to assume a set of simpler and more 
self-evident axioms about probability and then attempt to prove that such a con
stant limiting frequency does in some sense exist? The latter approach is the modem 
axiomatic approach to probability theory that we shall adopt in this chapter. In par
ticular, we shall assume that, for each event E in the sample space S, there exists a 
value P(E), referred to as the probability of E. We shall then assume that all these 
probabilities satisfy a certain set of axioms, which, we hope the reader will agree, is 
in accordance with our intuitive notion of probability. 

Consider an experiment whose sample space is S. For each event E of the sample 
space S, we assume that a number P(E) is defined and satisfies the following three 
axioms: 

The three axioms of probability 

Axiom 1 

0::::; P(E) ::::; 1 

Axiom2 

P(S) = 1 

Axiom3 
For any sequence of mutually exclusive events E1, E2, ... (that is, events for 
which EiEj = 0 when i =F j), 

P (Q E.) ~ ~?(E;) 
We refer to P(E) as the probability of the event E. 
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Thus, Axiom 1 states that the probability that the outcome of the experiment 
is an outcome in E is some number between 0 and 1. Axiom 2 states that, with 
probability 1, the outcome will be a point in the sample space S. Axiom 3 states 
that, for any sequence of mutually exclusive events, the probability of at least one of 
these events occurring is just the sum of their respective probabilities. 

If we consider a sequence of events E1, E2, ... , where E1 = S and Ei = 0 for 
00 

i > 1, then, because the events are mutually exclusive and because S = LJ Ei, we 
i=1 

have, from Axiom 3, 

00 00 

P(S) = L P(Ei) = P(S) + L P(0) 
i=1 i=2 

implying that 

P(0) = 0 

That is, the null event has probability 0 of occurring. 
Note that it follows that, for any finite sequence of mutually exclusive events E1, 

E2, ... ,En, 

(3.1) 

This equation follows from Axiom 3 by defining Ei as the null event for all values 
of i greater than n. Axiom 3 is equivalent to Equation (3.1) when the sample space 
is finite. (Why?) However, the added generality of Axiom 3 is necessary when the 
sample space consists of an infinite number of points. 

If our experiment consists of tossing a coin and if we assume that a head is as likely 
to appear as a tail, then we would have 

P({H}) = P({T}) = ~ 

On the other hand, if the coin were biased and we believed that a head were twice 
as likely to appear as a tail, then we would have 

2 1 
P({H}) = 3 P({T}) = 3 • 

If a die is rolled and we suppose that all six sides are equally likely to appear, then 
we would have P({l}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = i· From 
Axiom 3, it would thus follow that the probability of rolling an even number would 
equal 

P({2,4,6}) = P({2}) + P({4}) + P({6}) = ~ • 
The assumption of the existence of a set function P, defined on the events of 

a sample space S and satisfying Axioms 1, 2, and 3, constitutes the modern math
ematical approach to probability theory. It is hoped that the reader will agree that 
the axioms are natural and in accordance with our intuitive concept of probabil
ity as related to chance and randomness. Furthermore, using these axioms, we shall 
be able to prove that if an experiment is repeated over and over again, then, with 
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probability 1, the proportion of time during which any specific event E occurs will 
equal P(E). This result is known as the strong law of large numbers. In addition, 
we present another possible interpretation of probability- as being a measure of 
belief-in Section 7. 

Technical Remark. We have supposed that P(E) is defined for all the events E 
of the sample space. Actually, when the sample space is an uncountably infinite set, 
P(E) is defined only for a class of events called measurable. However, this restriction 
need not concern us, as all events of any practical interest are measurable. 

4 Some Simple Propositions 

Proposition 
4.1 

In this section, we prove some simple propositions regarding probabilities. We first 
note that since E and JiC- are always mutually exclusive and since E u JiC- = S, we 
have, by Axioms 2 and 3, 

1 = P(S) = P(E U f;c) = P(E) + P(f;c) 

Or, equivalently, we have Proposition 4.1. 

P(f;c) = 1 - P(E) 

In words, Proposition 4.1 states that the probability that an event does not occur 
is 1 minus the probability that it does occur. For instance, if the probability of obtain
ing a head on the toss of a coin is ~, then the probability of obtaining a tail must be i. 

Our second proposition states that if the event E is contained in the event F, 
then the probability of E is no greater than the probability of F. 

Proposition If E C F, then P(E) :=;; P(F). 
4.2 

Proposition 
4.3 

Proof Since E C F, it follows that we can express F as 

F=E U f;cF 

Hence, because E and JiC-Fare mutually exclusive, we obtain, from Axiom 3, 

P(F) = P(E) + P(f;c F) 

which proves the result, since P(Ec F) ~ 0. 0 

Proposition 4.2 tells us, for instance, that the probability of rolling a 1 with a die 
is less than or equal to the probability of rolling an odd value with the die. 

The next proposition gives the relationship between the probability of the union 
of two events, expressed in terms of the individual probabilities, and the probability 
of the intersection of the events. 

P(E U F) = P(E) + P(F) - P(EF) 

Proof To derive a formula for P(E U F), we first note that E U F can be written as 
the union of the two disjoint events E and Ee F. Thus, from Axiom 3, we obtain 

P(E U F) =P(E u f;cF) 

= P(E) + P(ECF) 
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figure 4 Venn diagram. 

figure S Venn diagram in sections. 

Furthermore, since F = EF u EcF, we again obtain from Axiom 3 

P(F) = P(EF) + P(£C F) 

or, equivalently, 
P(£C F) = P(F) - P(EF) 

thereby completing the proof. D 

Proposition 4.3 could also have been proved by making use of the Venn diagram 
in Figure 4. 

Let us divide E U Finto three mutually exclusive sections, as shown in Figure 5. 
In words, section I represents all the points in E that are not in F (that is, EFc), 
section II represents all points both in E and in F (that is, EF), and section III rep
resents all points in F that are not in E (that is, Ee F). 

From Figure 5, we see that 

EUF=IUIIUIII 

E=IUII 

F=IIUIII 

As I, II, and III are mutually exclusive, it follows from Axiom 3 that 

P(E U F) = P(I) + P(II) + P(III) 

P(E) = P(I) + P(II) 

P(F) = P(II) + P(III) 

which shows that 
P(E U F) = P(E) + P(F) - P(II) 

and Proposition 4.3 is proved, since II = EF. 

J is taking two books along on her holiday vacation. With probability .5, she will like 
the first book; with probability .4, she will like the second book; and with probabil
ity .3, she will like both books. What is the probability that she likes neither book? 
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Solution Let B; denote the event that J likes book i, i' = 1, 2. Then the probability 
that she likes at least one of the books is 

P(B1 U B2) = P(B1) + P(B2) - P(B1B2) = .5 + .4 - .3 = .6 

Because the event that J likes neither book is the complement of the event that she 
likes at least one of them, we obtain the result 

• 
We may also calculate the probability that any one of the three events E, F, and 

G occurs, namely, 

P(E u F U G) = P[ (E u F) U G] 

which, by Proposition 4.3, equals 

P(E u F) + P(G) - P((E u F}G] 

Now, it follows from the distributive law that the events (E U F)G and EG u FG 
are equivalent; hence, from the preceding equations, we obtain 

P(E u Fu G) 

= P(E) + P(F) - P(EF) + P( G) - P(EG u FG) 

= P(E) + P(F) - P(EF) + P(G) - P(EG) - P(FG) + P(EGFG) 

= P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG) + P(EFG) 

In fact, the following proposition, known as the inclusion-exclusion identity, can 
be proved by mathematical induction: 

n 

P(E1 U E2 U · · · U En) = L P(E;) - L P(E;1 E;2) + · · · 

The summation . . L . P(E;1 E;2 • • • E;,) is taken over all of the (; ) possible sub-
11 <lz<···<lr 

sets of sizer of the set {1,2, ... ,n}. 

In words, Proposition 4.4 states that the probability of the union of n events 
equals the sum of the probabilities of these events taken one at a time, minus the 
sum of the probabilities of these events taken two at a time, plus the sum of the 
probabilities of these events taken three at a time, and so on. 

Remarks 1. For a noninductive argument for Proposition 4.4, note first that if an 
outcome of the sample space is not a member of any of the sets E;, then its probabil
ity does not contribute anything to either side of the equality. Now, suppose that an 
outcome is in exactly m of the events E;, where m > 0. Then, since it is in U E;, its 

i 

probability is counted once in P ( y E;); also, as this outcome is contained in ( ; ) 
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subsets of the type Ei1 Ei2 • • • Eik, its probability is counted 

times on the right of the equality sign in Proposition 4.4. Thus, for m > 0, we must 
show that 

However, since 1 = ( ~ ) , the preceding equation is equivalent to 

and the latter equation follows from the binomial theorem, since 

2. The following is a succinct way of writing the inclusion-exclusion identity: 

n 

P(U'/=1Ei) = ~.)-1/+1 L P(Ei1 • • • Ei,) 
r=l i1 <-··<i, 

3. In the inclusion-exclusion identity, going out one term results in an upper 
bound on the probability of the union, going out two terms results in a lower bound 
on the probability, going out three terms results in an upper bound on the proba
bility, going out four terms results in a lower bound, and so on. That is, for events 
E1, ... ,En, we have 

n 

P(LJ'/=1 Ei) ::;; L P(Ei) 
i=l 
n 

P(U7=1 Ei) ~ L P(Ei) - L P(EiEj) 
i=l j<i 
n 

P(U'/=1 Ei) :5 L P(Ei) 
i=l j<i k<j<i 

and so on. To prove the validity of these bounds, note the identity 

U'/=1Ei = E1 U E{E2 U E{£2E3 U · · · U E{ · · ·£'/i_1En 

(4.1) 

(4.2) 

(4.3) 

That is, at least one of the events Ei occurs if £ 1 occurs, or if E1 does not occur but 
E2 does, or if £ 1 and E2 do not occur but E3 does, and so on. Because the right-hand 
side is the union of disjoint events, we obtain 

n 

= P(E1) + LP(El_ · · ·£i-1Ei) (4.4) 
i=2 
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Now, let Bi = E1 · · · Ef_1 = (Uj<iEj)c be the event that none of the first i - 1 
events occurs. Applying the identity 

shows that 

or, equivalently, 
P(E! · · · Ej_1Ei) = P(Ei) - P(Uj<iEiEj) 

Substituting this equation into (4.4) yields 

P(U~1 Ei) = L,P(Ei) - L,P(Uj<iEiEj) (4.5) 

Because probabilities are always nonnegative, Inequality (4.1) follows directly from 
Equation (4.5). Now, fixing i and applying Inequality (4.1) to P(Uj<iEiEj) yields 

P(Uj<iEiEj) ::5 L P(EiEj) 
j<i 

which, by Equation ( 4.5), gives Inequality ( 4.2). Similarly, fixing i and applying 
Inequality (4.2) to P(Uj<iEiEj) yields 

P(Uj<iEiEj) ;::: L P(EiEj) - L P(EiEjEiEk) 
j<i k<j<i 

which, by Equation (4.5), gives Inequality (4.3). The next inclusion-exclusion 
inequality is now obtained by fixing i and applying Inequality ( 4.3) to P(Uj<iEiEj), 
and so on. 

5 Sample Spaces Having Equally Likely Outcomes 
In many experiments, it is natural to assume that all outcomes in the sample space 
are equally likely to occur. That is, consider an experiment whose sample space S is 
a finite set, say, S = {1, 2, ... , N}. Then, it is often natural to assume that 

P({l}) = P({2}) = · · · = P({N}) 

which implies, from Axioms 2 and 3 (why?), that 

P({i}) = ~ i = 1, 2, ... , N 

From this equation, it follows from Axiom 3 that, for any event E, 

P(E) = number of outcomes in E 
number of outcomes in S 

In words, if we assume that all outcomes of an experiment are equally likely to occur, 
then the probability of any event E equals the proportion of outcomes in the sample 
space that are contained in E. 
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If two dice are rolled, what is the probability that the sum of the upturned faces will 
equal 7? 

Solution We shall solve this problem under the assumption that all of the 36 possible 
outcomes are equally likely. Since there are 6 possible outcomes-namely, (1, 6), 
(2, 5), (3, 4), (4, 3), (5, 2), and (6, 1)-that result in the sum of the dice being equal 
to 7, the desired probability is~ = *· • 
If 3 balls are "randomly drawn" from a bowl containing 6 white and 5 black balls, 
what is the probability that one of the balls is white and the other two black? 

Solution If we regard the balls as being distinguishable and the order in which they 
are selected as being relevant, then the sample space consists of 11 · 10 · 9 = 990 
outcomes. Furthermore, there are 6 · 5 · 4 = 120 outcomes in which the first ball 
selected is white and the other two are black; 5 · 6 · 4 = 120 outcomes in which 
the first is black, the second is white, and the third is black; and 5 · 4 · 6 = 120 in 
which the first two are black and the third is white. Hence, assuming that "randomly 
drawn" means that each outcome in the sample space is equally likely to occur, we 
see that the desired probability is -

120 + 120 + 120 4 
= 990 11 

This problem could also have been solved by regarding the outcome of the 
experiment as the unordered set of drawn balls. From this point of view, there are 

( ; 1 ) = 165 outcomes in the sample space. Now, each set of 3 balls corresponds 

to 3! outcomes when the order of selection is noted. As a result, if all outcomes 
are assumed equally likely when the order of selection is noted, then it follows that 
they remain equally likely when the outcome is taken to be the unordered set of 
selected balls. Hence, using the latter representation of the experiment, we see that 
the desired probability is 

which, of course, agrees with the answer obtained previously in the chapter. • 
When the experiment consists of a random selection of k items from a set of n 

items, we have the flexibility of either letting the outcome of the experiment be the 
ordered selection of the k items or letting it be the unordered set of items selected. 
In the former case, we would assume that each new selection is equally likely to be 
any of the so far unselected items of the set, and in the latter case, we would assume 
that all c;) possible subsets of k items are equally likely to be the set selected. For 
instance, suppose 5 people are to be randomly selected from a group of 20 individu
als consisting of 10 married couples, and we want to determine P(N), the probability 
that the 5 chosen are all unrelated. (That is, no two are married to each other.) If 
we regard the sample space as the set of 5 people chosen, then there are fs~ equally 
likely outcomes. An outcome that does not contain a married couple can be thought 
of as being the result of a six-stage experiment: In the first stage, 5 of the 10 couples 
to have a member in the group are chosen; in the next 5 stages, 1 of the 2 members of 
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each of these couples is selected. Thus, there are (\0)25 possible outcomes in which 
the 5 members selected are unrelated, yielding the desired probability of 

(1so)2s 
P(N) = (250) 

In contrast, we could let the outcome of the experiment be the ordered selection 
of the 5 individuals. In this setting, there are 20 · 19 · 18 · 17 · 16 equally likely 
outcomes, of which 20 · 18 · 16 · 14 · 12 outcomes result in a group of 5 unrelated 
individuals, yielding the result 

20 . 18 . 16 . 14 . 12 
P(N) = 20 · 19 · 18 · 17 · 16 

We leave it for the reader to verify that the two answers are identical. 

A committee of 5 is to be selected from a group of 6 men and 9 women. If the 
selection is made randomly, what is the probability that the committee consists of 3 
men and 2 women? 

Solution Because each of the {1i) possible committees is equally likely to be selected, 
the desired probability is 

240 
= 1001 • 

An urn contains n balls, one of which is special. If k of these balls are withdrawn one 
at a time, with each selection being equally likely to be any of the balls that remain 
at the time, what is the probability that the special ball is chosen? 

Solution Since all of the balls are treated in an identical manner, it follows that the 

set of k balls selected is equally likely to be any of the ( ~ ) sets of k balls. Therefore, 

P{special ball is selected} = 
n 
k 

=-

We could also have obtained this result by letting Ai denote the event that the special 
ball is the ith ball to be chosen, i = 1, ... , k. Then, since each one of the n balls is 
equally likely to be the ith ball chosen, it follows that P(Ai) = l/n. Hence, because 
these events are clearly mutually exclusive, we have 

( 
k ) k k 

P{special ball is selected}= P ~Ai = t; P(Ai) =;; 

We could also have argued that P(Ai) = 1/n, by noting that there are n(n - 1) · · · 
(n - k + 1) = n!/(n - k)! equally likely outcomes of the experiment, of which 
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(n - l)(n - 2)- · · (n - i + 1)(1)(n - i)- · · (n - k + 1) = (n - 1)!/(n - k)! result 
in the special ball being the ith one chosen. From this reasoning, it follows that 

P(Ai) = (n - l)! = ! 
n! n • 

Suppose that n + m balls, of which n are red and m are blue, are arranged in a linear 
order in such a way that all (n + m)! possible orderings are equally likely. If we 
record the result of this experiment by listing only the colors of the successive balls, 
show that all the possible results remain equally likely. 

Solution Consider any one of the (n + m)! possible orderings, and note that any per
mutation of the red balls among themselves and of the blue balls among themselves 
does not change the sequence of colors. As a result, every ordering of colorings cor
responds ton! m! different orderings of then + m balls, so every ordering of the 
colors has probability c:!':::)! of occurring. 

For example, suppose that there are 2 red balls, numbered r1, r2, and 2 blue balls, 
numbered b1, b2. Then, of the 4! possible orderings, there will be 2! 2! orderings that 
result in any specified color combination. For instance, the following orderings result 
in the successive balls alternating in color, with a red ball first: ~ 

Therefore, each of the possible orderings of the colors has probability ~ = ~ of 
occurring. • 

A poker hand consists of 5 cards. If the cards have distinct consecutive values and 
are not all of the same suit, we say that the hand is a straight. For instance, a hand 
consisting of the five of spades, six of spades, seven of spades, eight of spades, and 
nine of hearts is a straight. What is the probability that one is dealt a straight? 

Solution We start by assuming that all ( 5
5
2 ) possible poker hands are equally 

likely. To determine the number of outcomes that are straights, let us first deter
mine the number of possible outcomes for which the poker hand consists of an ace, 
two, three, four, and five (the suits being irrelevant). Since the ace can be any 1 of the 
4 possible aces, and similarly for the two, three, four, and five, it follows that there 
are 45 outcomes leading to exactly one ace, two, three, four, and five. Hence, since 
in 4 of these outcomes all the cards will be of the same suit (such a hand is called a 
straight flush), it follows that there are 45 - 4 hands that make up a straight of the 
form ace, two, three, four, and five. Similarly, there are 45 - 4 hands that make up a 
straight of the form ten, jack, queen, king, and ace. Thus, there are 10(45 - 4) hands 
that are straights, and it follows that the desired probability is 

10(45 - 4) ~ .0039 

( 552) 
• 

A 5-card poker hand is said to be a full house if it consists of 3 cards of the same 
denomination and 2 other cards of the same denomination (of course, different from 
the first denomination). Thus, a full house is three of a kind plus a pair. What is the 
probability that one is dealt a full house? 
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Solution Again, we assume that all ( 5; ) possible hands are equally likely. To 

determine the number of possible full houses, we first note that there are ( ~ ) ( ~ ) 
different combinations of, say, 2 tens and 3 jacks. Because there are 13 different 
choices for the kind of pair and, after a pair has been chosen, there are 12 other 
choices for the denomination of the remaining 3 cards, it follows that the probability 
of a full house is 

"'".0014 • 

In the game of bridge, the entire deck of 52 cards is dealt out to 4 players. What is 
the probability that 

(a) one of the players receives all 13 spades; 
(b) each player receives 1 ace? 

Solution (a) Letting Ei be the event that hand i has all 13 spades, then 

1 
P(Ei) = S2, i = 1,2,3,4 

(13) 

Because the events Ei, i = 1, 2, 3, 4, are mutually exclusive, the probability that one 
of the hands is dealt all 13 spades is 

4 ~ (52) -12 P(Ui=l Ei) = ~ P(Ei) = 4/ l3 "'" 6.3 X 10 
t=l 

(b) To determine the number of outcomes in which each of the distinct players 

receives exactly 1 ace, put aside the aces and note that there are ( 12, 12~~2, 12 ) 

possible divisions of the other 48 cards when each player is to receive 12. Because 
there are 4! ways of dividing the 4 aces so that each player receives 1, we see that 
the(numb

4
e: of p)ossible outcomes in which each player receives exactly 1 ace is 

41 12,12,12,12 . 

As there are (13,1n3•13) possible hands, the desired probability is thus 

41 ( 48 ) 
. 12,12,12,12 "'" .1055 

(13,1jh13) • 
Some results in probability are quite surprising when initially encountered. Our 

next two examples illustrate this phenomenon. 
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If n people are present in a room, what is the probability that no two of them cele
brate their birthday on the same day of the year? How large need n be so that this 
probability is less than i? 
Solution As each person can celebrate his or her birthday on any one of 365 days, 
there are a total of (365)n possible outcomes. (We are ignoring the possibility of 
someone having been born on February 29.) Assuming that each outcome is equally 
likely, we see that the desired probability is (365)(364)(363) ... (365 - n + l)/(365)n. 
It is a rather surprising fact that when n ~ 23, this probability is less than i· That is, if 
there are 23 or more people in a room, then the probability that at least two of them 
have the same birthday exceeds ~·Many people are initially surprised by this result, 
since 23 seems so small in relation to 365, the number of days of the year. However, 

every pair of individuals has probability 365 
2 = - 1- of having the same birthday, 

(365) 365 

and in a group of 23 people, there are ( 2:}_ ) = 253 different pairs of individuals. 

Looked at this way, the result no longer seems so surprising. 
When there are 50 people in the room, the probability that at least two share the 

same birthday is approximately .970, and with 100 persons in theToom, the odds are 

better than 3,000,000:1. (That is, the probability is greater than 3 x :o6 that at 
3X10 +l 

least two people have the same birthday.) • 

A deck of 52 playing cards is shuffled, and the cards are turned up one at a time until 
the first ace appears. Is the next card-that is, the card following the first ace-more 
likely to be the ace of spades or the two of clubs? 

Solution To determine the probability that the card following the first ace is the 
ace of spades, we need to calculate how many of the (52)! possible orderings of the 
cards have the ace of spades immediately following the first ace. To begin, note that 
each ordering of the 52 cards can be obtained by first ordering the 51 cards different 
from the ace of spades and then inserting the ace of spades into that ordering. Fur
thermore, for each of the (51)! orderings of the other cards, there is only one place • 
where the ace of spades can be placed so that it follows the first ace. For instance, if 
the ordering of the other 51 cards is 

4c, 6h, Jd, 5s, Ac, 7d, ... ,Kh 

then the only insertion of the ace of spades into this ordering that results in its fol
lowing the first ace is 

4c, 6h, Jd, 5s, Ac, As, 7d, ... ,Kh 

Therefore, there are (51)! orderings that result in the ace of spades following the first 
ace, so 

(51)! 1 
P{the ace of spades follows the first ace}= (52)! = 52 

In fact, by exactly the same argument, it follows that the probability that the two 
of clubs (or any other specified card) follows the first ace is also .Jz. In other words, 
each of the 52 cards of the deck is equally likely to be the one that follows the first 
ace! 

Many people find this result rather surprising. Indeed, a common reaction is to 
suppose initially that it is more likely that the two of clubs (rather than the ace of 
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spades) follows the first ace, since that first ace might itself be the ace of spades. This 
reaction is often followed by the realization that the two of clubs might itself appear 
before the first ace, thus negating its chance of immediately following the first ace. 
However, as there is one chance in four that the ace of spades will be the first ace 
(because all 4 aces are equally likely to be first) and only one chance in five that 
the two of clubs will appear before the first ace (because each of the set of 5 cards 
consisting of the two of clubs and the 4 aces is equally likely to be the first of this set 
to appear), it again appears that the two of clubs is more likely. However, this is not 
the case, and our more complete analysis shows that they are equally likely. • 

A football team consists of 20 offensive and 20 defensive players. The players are to 
be paired in groups of 2 for the purpose of determining roommates. If the pairing is 
done at random, what is the probability that there are no offensive-defensive room
mate pairs? What is the probability that there are 2i offensive-defensive roommate 
pairs, i = 1, 2, ... , 10? 

Solution There are 

( 40 ) (40)! 
2,2, ... ,2 = (2!)20 

ways of dividing the 40 players into 20 ordered pairs of two each. (That is, there 
are (40)!/220 ways of dividing the players into a first pair, a second pair, and so on.) 
Hence, there are (40)!/220(20)! ways of dividing the players into (unordered) pairs of 
2 each. Furthermore, since a division will result in no offensive-defensive pairs if the 
offensive (and defensive) players are paired among themselves, it follows that there 
are [ (20) ! /210 (10) !]2 such divisions. Hence, the probability of no offensive-defensive 
roommate pairs, call it Po, is given by 

( (20)! ) 2 

210(10)! [(20)!]3 

Po= (40)! = [(10)!]2(40)! 
220(20)! 

To determine P2i, the probability that there are 2i offensive-defensive pairs, we first 

note that there are ( ~ ) 2 
ways of selecting the 2i offensive players and the 2i defen

sive players who are to be in the offensive-defensive pairs. These 4i players can then 
be paired up into (2i) ! possible offensive-defensive pairs. (This is so because the 
first offensive player can be paired with any of the 2i defensive players, the second 
offensive player with any of the remaining 2i - 1 defensive players, and so on.) 
As the remaining 20 - 2i offensive (and defensive) players must be paired among 
themselves, it follows that there are 

( 20 ) 2 2. ' [ (20 - 2i) ! J 2 
2i ( z). 210-i(lO - i)! 

divisions that lead to 2i offensive-defensive pairs. Hence, 

( )
2 

20 2. ' (20 - 2i) ! 2 
2i ( l). [210-i(lO - i)J 

(40)! i = 0, 1, ... '10 

220(20)! 
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The P2i, i = 0, 1, ... , 10, can now be computed, or they can be approximated by 
making use of a result of Stirling, which shows that n! can be approximated by 
nn+lf2e-n,,/2ii. For instance, we obtain 

Po ~ 1.3403 x 10-6 

Pm ~ .345861 

P20 ~ 7.6068 X 10-6 • 
Our next three examples illustrate the usefulness of the inclusion-exclusion 

identity (Proposition 4.4). In Example SI, the introduction of probability enables us 
to obtain a quick solution to a counting problem. 

A total of 36 members of a club play tennis, 28 play squash, and 18 play badminton. 
Furthermore, 22 of the members play both tennis and squash, 12 play both tennis 
and badminton, 9 play both squash and badminton, and 4 play all three sports. How 
many members of this club play at least one of three sports? 

Solution Let N denote the number of members of the club, and introduce probabil
ity by assuming that a member of the club is randomly selected. If, for any subset C 
of members of the club, we let P( C) denote the probability that the selected member 
is contained in C, then ~ 

P C number of members in C 
( ) = N 

Now, with T being the set of members that plays tennis, S being the set that plays 
squash, and B being the set that plays badminton, we have, from Proposition 4.4, 

P(T u Su B) 

= P(T) + P(S) + P(B) - P(TS) - P(TB) - P(SB) + P(TSB) 

36 + 28 + 18 - 22 - 12 - 9 + 4 
= 

43 
=N 

N 

Hence, we can conclude that 43 members play at least one of the sports. • 

The next example in this section not only possesses the virtue of giving rise to a 
somewhat surprising answer, but is also of theoretical interest. 

The matching problem 

Suppose that each of N men at a party throws his hat into the center of the room. 
The hats are first mixed up, and then each man randomly selects a hat. What is the 
probability that none of the men selects his own hat? 

Solution We first calculate the complementary probability of at least one man select
ing his own hat. Let us denote by Ei, i = 1, 2, ... , N the event that the ith man selects 

his own hat. Now, by Proposition 4.4, P (Q E), the probability that at least one of 

the men selects his own hat is given by 

P(Qe•) = 't?(E;) - ,'[;;,P(E;,E;,) + ··· 

+ (-l)n+l L P(Eit Ei2 • • • Ein) 
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If we regard the outcome of this experiment as a vector of N numbers, where the ith 
element is the number of the hat drawn by the ith man, then there are N! possible 
outcomes. [The outcome (1, 2, 3, ... , N) means, for example, that each man selects his 
own hat.] Furthermore, Ei1 Ei2 ••• Ein• the event that each of then men ii, iz, ... , in 
selects his own hat, can occur in any of (N - n)(N - n - 1) · · · 3 · 2 · 1 = (N - n)! 
possible ways; for, of the remaining N - n men, the first can select any of N - n 
hats, the second can then select any of N - n - 1 hats, and so on. Hence, assuming 
that all N! possible outcomes are equally likely, we see that 

(N - n)! 
P(Ei1 Ei2 • • • Ein) = N! 

Also, as there are ( ~) terms in . _E . P(Ei1 Ei2 • • • Ein), it follows that 
IJ <12···<ln 

Thus, 

1 1 N+l 1 - - + - - ... + (-1) -
2! 3! N! 

Hence, the probability that none of the men selects his own hat is 

1 1 (-l)N N · 
1 - 1 + - - - + + -- = '"'(-1)1/z"I 2! 3! ... N! ~ . 

i=O 

00 

Upon letting x = -1 in the identity eX = I: xi /i! the preceding probability when N 
i=O 

large is seen to be approximately equal to e-1 ~ .3679. In other words, for N large, 
the probability that none of the men selects his own hat is approximately .37. (How 
many readers would have incorrectly thought that this probability would go to 1 as 
~~ . 

For another illustration of the usefulness of Proposition 4.4, consider the follow
ing example. 

Compute the probability that if 10 married couples are seated at random at a round 
table, then no wife sits next to her husband. 

Solution If we let Ei, i = 1, 2, ... , 10 denote the event that the ith couple sit next 

to each other, it follows that the desired probability is 1 - P (g E). Now, from 

Proposition 4.4, 

+ · · · - P(E1E2 · · · E10) 

To compute P(Ei1 Ei2 • • • Ein), we first note that there are 19! ways of arranging 
20 people around a round table. (Why?) The number of arrangements that result in 
a specified set of n men sitting next to their wives can most easily be obtained by first 
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thinking of each of the n married couples as being single entities. If this were the 
case, then we would need to arrange 20 - n entities around a round table, and there 
are clearly (20 - n - 1)! such arrangements. Finally, since each of then married 
couples can be arranged next to each other in one of two possible ways, it follows 
that there are 2n(20 - n - 1)! arrangements that result in a specified set of n men 
each sitting next to their wives. Therefore, 

2n(19 - n)! 
P(Ei1 Ei2 • • • Ein) = (l9)! 

Thus, from Proposition 4.4, we obtain that the probability that at least one married 
couple sits together, namely, 

( 10) 21 (18)! - ( 10) 22 (17)! ( 10) 23 (16)! - ... - ( 10) 210--2.!_ ~ .6605 
1 (19)! 2 (19)! + 3 (19)! 10 (19)! 

and the desired probability is approximately .3395. • 

Runs 

Consider an athletic team that had just finished its season with a final record of n 
wins and m losses. By examining the sequence of wins and losses, we are hoping to 
determine whether the team had stretches of games in which it was more likely to 
win than at other times. One way to gain some insight into this question is to count 
the number of runs of wins and then see how likely that result would be when all 
(n + m)!/(n! m!) orderings of then wins and m losses are assumed equally likely. By 
a run of wins, we mean a consecutive sequence of wins. For instance, if n = 10, m = 6, 
and the sequence of outcomes was WWLLWWWLWLLLWWWW, then there would 
be 4 runs of wins-the first run being of size 2, the second of size 3, the third of size 
1, and the fourth of size 4. 

Suppose now that a team has n wins and m losses. Assuming that all (n + m)!/ 

(n! m!) = ( n ~ m) orderings are equally likely, let us determine the probability 

that there will be exactly r runs of wins. To do so, consider first any vector of positive 
integers x1,x2, ... ,Xr with x1 + · · · + Xr = n, and let us see how many outcomes 
result in r runs of wins in which the ith run is of size Xi, i = 1, ... , r. For any such 
outcome, if we let y1 denote the number of losses before the first run of wins, Y2 the 
number of losses between the first 2 runs of wins, ... • Yr+1 the number of losses after 
the last run of wins, then the Yi satisfy 

Y1 + Y2 + · · · + Yr+1 = m Y1 2:: 0,Yr+l 2:: O,yi > 0, i = 2, ... , r 

and the outcome can be represented schematically as 

LL ... L WW ... W L ... L WW ... W ... WW L ... L --..-- '-.-' ~ '-.-' '--,.--' ~ 
YI XI Y2 Xz Xr Yr+! 

Hence, the number of outcomes that result in r runs of wins-the ith of size Xi, i = 
1, ... r-is equal to the number of integers yi, ... • Yr+l that satisfy the foregoing, or, 
equivalently, to the number of positive integers 

Y1=Y1+1 Yi=Yi,i=2, ... ,r,yr+l=Yr+1+1 

that satisfy 
Yi + Y2 + · .. + Yr+l = m + 2 · 
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( m + 1) Generally, there are r such outcomes. Hence, the total number of out-

comes that result in r runs of wins is ( m : 1 ) , multiplied by the number of positive 

integral solutions of x1 + · · · + x, = n. Thus, there are ( m : 1 ) ( ~ = ~ ) out

comes resulting in r runs of wins. As there are ( n ~ m ) equally likely outcomes, 

it follows that 

P({rruns of wins})= r~l 

For example, if n = 8 and m = 6, then the probability of 7 runs is ( ~ ) ( ~ ) / 

( 1:) = 1/429 if all ( 1:) outcomes are equally likely. Hence, if the outcome 

was WLWLWLWLWWLWLW, then we might suspect that the team's probability of 
winning was changing over time. (In particular, the probability that the team wins 
seems to be quite high when it lost its last game and quite low when it won its last 
game.) On the other extreme, if the outcome were WWWWWWWWLLLLLL, then 

there would have been only 1 run, and as P({l run}) = ( i) { 6) / ( 184 ) = 

1/429, it would thus again seem unlikely that the team's prob~ility of winning 
remained unchanged over its 14 games. • 

* 6 Probability as a Continuous Set Function 
A sequence of events {En,n ~ 1} is said to be an increasing sequence if 

Ei C Ez C · · · C En C En+l C · · · 

whereas it is said to be a decreasing sequence if 

Ei ::::> Ez ::::> • • • ::::> En ::::> En+l ::::> • • • 

If {En,n ~ 1} is an increasing sequence of events, then we define a new event, 
denoted by lim En, by 

n~oo 
00 

lim En= LJEi 
n~oo 

i=l 

Similarly, if {En, n ~ 1} is a decreasing sequence of events, we define lim En, by 
n~oo 

00 

lim En= nEi 
n~oo 

i=l 

We now prove the following Proposition 6.1: 



Axioms of Probability 

Proposition If {En,n ~ 1} is either an increasing or a decreasing sequence of events, then 
6.1 

lim P(En) = P( lim En) 
n~oo n~oo 

Proof Suppose, first, that {En, n ~ 1} is an increasing sequence, and define the events 
Fn,n ~ 1, by 

F1 =E1 

Fn =En (YE.)'= EnE,;_1 n > I 

n-1 
where we have used the fact that U Ei = En-1 • since the events are increasing. In 

1 
words, Fn consists of those outcomes in En that are not in any of the earlier Ei, i < n. 
It is easy to verify that the Fn are mutually exclusive events such that 

n n 

and for all n ~ 1 
i=l i=l i=l i=l 

Thus, 

00 

= L P(Fi) (by Axiom 3) 
1 

n 

= lim "'P(Fi) n~oo~ 
1 

= n~oop ( YF•) 
= n~oop (YE;) 
= lim P(En) 
n~oo 

which proves the result when {En, n ~ 1} is increasing. 

If {En,n ~ 1} is a decreasing sequence, then {E~,n ~ 1} is an increasing sequence; 
hence, from the preceding equations, 

However, because y E]' = ( Q E1 r it follows that 
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or, equivalently, 

1 - P (n00 
Ei) = lim [1 - P(En)] = 1 - lim P(En) 

n-+oo n-+oo 
1 

or 

which proves the result. D 

Probability and a "paradox" 

Suppose that we possess an infinitely large urn and an infinite collection of balls 
labeled ball number 1, number 2, number 3, and so on. Consider an experiment 
performed as follows: At 1 minute to 12 P.M., balls numbered 1 through 10 are placed 
in the urn and ball number 10 is withdrawn. (Assume that the withdrawal takes 
no time.) At ! minute to 12 P.M., balls numbered 11 through 20 are placed in the 
urn and ball number 20 is withdrawn. At ! minute to 12 P.M., balls numbered 21 
through 30 are placed in the urn and ball number 30 is withdrawn. At l minute 
to 12 P.M., and so on. The question of interest is, How many balls are in the urn at 
12P.M.? 

The answer to this question is clearly that there is an infinite number of 
balls in the urn at 12 P.M., since any ball whose number is not of the form 10n, 
n ::::: 1, will have been placed in the urn and will not have been withdrawn before 
12 P.M. Hence, the problem is solved when the experiment is performed as described. 

However, let us now change the experiment and suppose that at 1 minute to 
12 P.M., balls numbered 1 through 10 are placed in the urn and ball number 1 is with
drawn; at ! minute to 12 P.M., balls numbered 11 through 20 are placed in the urn 
and ball number 2 is withdrawn; at ! minute to 12 P.M., balls numbered 21 through 
30 are placed in the urn and ball number 3 is withdrawn; at A minute to 12 P.M., balls 
numbered 31 through 40 are placed in the urn and ball number 4 is withdrawn, and 
so on. For this new experiment, how many balls are in the urn at 12 P.M.? 

Surprisingly enough, the answer now is that the urn is empty at 12 P.M. For, 
consider any ball-say, ball number n. At some time prior to 12P.M. [in particular, 

at (ir-i minutes to 12P.M.], this ball would have been withdrawn from the urn. 
Hence, for each n, ball number n is not in the urn at 12 P.M.; therefore, the urn must 
be empty at that time. 

Because for all n, the number of balls in the urn after the nth interchange is 
the same in both variations of the experiment, most people are surprised that the 
two scenarios produce such different results in the limit. It is important to recognize 
that the reason the results are different is not because there is an actual paradox, or 
mathematical contradiction, but rather because of the logic of the situation, and also 
that the surprise results because one's initial intuition when dealing with infinity is 
not always correct. (This latter statement is not surprising, for when the theory of 
the infinite was first developed by the mathematician Georg Cantor in the second 
half of the nineteenth century, many of the other leading mathematicians of the day 
called it nonsensical and ridiculed Cantor for making such claims as that the set of 
all integers and the set of all even integers have the same number of elements.) 

We see from the preceding discussion that the manner in which the balls are 
withdrawn makes a difference. For, in the first case, only balls numbered lOn, n ::::: 1, 
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are ever withdrawn, whereas in the second case all of the balls are eventually with
drawn. Let us now suppose that whenever a ball is to be withdrawn, that ball is 
randomly selected from among those present. That is, suppose that at 1 minute to 
12 P.M. balls numbered 1 through 10 are placed in the urn and a ball is randomly 
selected and withdrawn, and so on. In this case, how many balls are in the urn at 
12P.M.? 

Solution We shall show that, with probability 1, the urn is empty at 12 P.M. Let us 
first consider ball number 1. Define En to be the event that ball number 1 is still in 
the urn after the first n withdrawals have been made. Clearly, 

9 · 18 · 27 .. · (9n) 
P(En) = --------

10 · 19 · 28 .. · (9n + 1) 

[To understand this equation, just note that if ball number 1 is still to be in the 
urn after the first n withdrawals, the first ball withdrawn can be any one of 9, the 
second any one of 18 (there are 19 balls in the urn at the time of the second with
drawal, one of which must be ball number 1), and so on. The denominator is similarly 
obtained.) ~ 

00 

Now, the event that ball number 1 is in the urn at 12 P.M. is just the event n En. 
n=l 

Because the events En, n ~ 1, are decreasing events, it follows from Proposition 6.1 
that 

P{ball number 1 is in the urn at 12 P.M.} 

= lim P(En) 
n-+oo 

00 
( 9n ) = n 9n + 1 

n=l 

We now show that 

noo 9n - 0 
9n + 1 -

n=l 

Since 

fI ( 9n ) = [n (9n + 1)]-1 

n=l 9n + 1 n=l 9n 

this is equivalent to showing that 
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Now, for all m <?:: 1, 

ri (1 + 9~) <?:: Ii (1 + 9~) 
n=l n=l 

= ( 1 + ~) ( 1 + 118) ( 1 + ;7) ... ( 1 + 9~) 
1 1 1 1 

> 9 + 18 + 27 + · · · + 9m 

1 m 1 

= 9tri 
00 

Hence, letting m--+oo and using the fact that I: 1/i = oo yields 
i=l 

Thus, letting F; denote the event that ball number i is in the urn at 12 P.M., we have 
shown that P(F1) = 0. Similarly, we can show that P(F;) = 0 for all i. 

00 

(For instance, the same reasoning shows that P(Fi) = 0 [9n/(9n + 1)] for 
n=2 

i = 11,12, ... ,20.) Therefore, the probability that the urn is not empty at 12P.M., 

P ( y F;), satisfies 

by Boole's inequality. (See Self-Test Exercise 14.) 
Thus, with probability 1, the urn will be empty at 12 P.M. • 

7 Probability as a Measure of Belief 
Thus far we have interpreted the probability of an event of a given experiment as 
being a measure of how frequently the event will occur when the experiment is 
continually repeated. However, there are also other uses of the term probability. 
For instance, we have all heard such statements as "It is 90 percent probable that 
Shakespeare actually wrote Hamlet" or "The probability that Oswald acted alone in 
assassinating Kennedy is .8." How are we to interpret these statements? 

The most simple and natural interpretation is that the probabilities referred to 
are measures of the individual's degree of belief in the statements that he or she 
is making. In other words, the individual making the foregoing statements is quite 
certain that Oswald acted alone and is even more certain that Shakespeare wrote 
Hamlet. This interpretation of probability as being a measure of the degree of one's 
belief is often referred to as the personal or subjective view of probability .. 

It seems logical to suppose that a "measure of the degree of one's belief' should 
satisfy all of the axioms of probability. For example, if we are 70 percent certain 
that Shakespeare wrote Julius Caesar and 10 percent certain that it was actually 
Marlowe, then it is logical to suppose that we are 80 percent certain that it was either 
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Shakespeare or Marlowe. Hence, whether we interpret probability as a measure of 
belief or as a long-run frequency of occurrence, its mathematical properties remain 
unchanged. 

Suppose that in a 7-horse race, you believe that each of the first 2 horses has a 20 
percent chance of winning, horses 3 and 4 each have a 15 percent chance, and the 
remaining 3 horses have a 10 percent chance each. Would it be better for you to 
wager at even money that the winner will be one of the first three horses or to wager, 
again at even money, that the winner will be one of the horses 1, 5, 6, and 7? 

Solution On the basis of your personal probabilities concerning the outcome of the 
race, your probability of winning the first bet is .2 + .2 + .15 = .55, whereas 
it is .2 + .1 + .1 + .1 = .5 for the second bet. Hence, the first wager is more 
attractive. • 

Note that in supposing that a person's subjective probabilities are always consis
tent with the axioms of probability, we are dealing with an idealized rather than an 
actual person. For instance, if we were to ask someone what he thought the chances 
were of 

(a) rain today, 
(b) rain tomorrow, 
(c) rain both today and tomorrow, 
( d) rain either today or tomorrow, 

it is quite possible that, after some deliberation, he might give 30 percent, 40 percent, 
20 percent, and 60 percent as answers. Unfortunately, such answers (or such subjec
tive probabilities) are not consistent with the axioms of probability. (Why not?) We 
would of course hope that after this was pointed out to the respondent, he would 
change his answers. (One possibility we could accept is 30 percent, 40 percent, 10 
percent, and 60 percent.) 

Let S denote the set of all possible outcomes of an exper
iment. S is called the sample space of the experiment. An 
event is a subset of S. If A;, i = 1, ... , n, are events, then 
n 
U A;, called the union of these events, consists of all out
i=l 
comes that are in at least one of the events A;, i = 1, ... , n. 

n 
Similarly, n A;, sometimes written as Ai·· ·An, is called 

i=l 
the intersection of the events A; and consists of all out-
comes that are in all of the events A;, i = 1, ... , n. 

For any event A, we define Ac to consist of all out
comes in the sample space that are not in A. We call Ac 
the complement of the event A. The event SC, which is 
empty of outcomes, is designated by 0 and is called the 
null set. If AB = 0, then we say that A and B are mutually 
exclusive. 

For each event A of the sample space S, we suppose 
that a number P(A), called the probability of A, is defined 
and is such that 

(i) 0 s P(A) s 1 
(ii) P(S) = 1 
(iii) For mutually exclusive events A;, i 2: 1, 

P(A) represents the probability that the outcome of the 
experiment is in A. 

It can be shown that 

P(Ac) = 1 - P(A) 

A useful result is that 

P(A U B) = P(A) + P(B) - P(AB) 

which can be generalized to give 

P(~A,) ~ ~?<A•l - ~<F<A1A;) 
+ LL L P(A;AjAk) 

i<j<k 

+ · · · + (-l)n+lP(A1 ···An) 

This result is known as the inclusion-exclusion identity. 
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If Sis finite and each one point set is assumed to have where IEI denotes the number of outcomes in the event E. 
equal probability, then P(A) can be interpreted either as a long-run relative 

Problems 

P(A) = IAI 
ISi 

I. A box contains 3 marbles: 1 red, 1 green, and 1 blue. 
Consider an experiment that consists of taking 1 marble 
from the box and then replacing it in the box and draw
ing a second marble from the box. Describe the sample 
space. Repeat when the second marble is drawn without 
replacing the first marble. 

2. In an experiment, die is rolled continually until a 6 
appears, at which point the experiment stops. What is the 
sample space of this experiment? Let En denote the event 
that n rolls are necessary to complete the experiment. 
What points of the sample space are contained in En? 

What is ( y En) c? 

3. Two dice are thrown. Let Ebe the event that the sum of 
the dice is odd, let F be the event that at least one of the 
dice lands on 1, and let G be the event that the sum is 5. 
Describe the events EF,E U F,FG,EF, and EFG. 

4. A, B, and C take turns flipping a coin. The first one to 
get a head wins. The sample space of this experiment can 
be defined by 

s - { 1, 01, 001, 0001, ... ' 
- 0000 ... 

(a) Interpret the sawple space. 
(b) Define the following events in terms of S: 

(i) A wins =A. 
(ii) B wins= B. 

(iii) (A U B)C. 

Assume that A flips first, then B, then C, then A, 
and so on. 

S. A system is composed of 5 components, each of which 
is either working or failed. Consider an experiment that 
consists of observing the status of each component, and 
let the outcome of the experiment be given by the vector 
(x1,x2,x3,x4,x5), where Xi is equal to 1 if component i is 
working and is equal to 0 if component i is failed. 
(a) How many outcomes are in the sample space of this 
experiment? 
(b) Suppose that the system will work if components 1 and 
2 are both working, or if components 3 and 4 are both 
working, or if components 1, 3, and 5 are all working. Let 
W be the event that the system will work. Specify all the 
outcomes in W. 

frequency or as a measure of one's degree of belief. 

(c) Let A be the event that components 4 and 5 are both 
failed. How many outcomes are contained in the event A? 
(d) Write out all the outcomes in the event AW. 

6. A hospital administrator codes incoming patients suf
fering gunshot wounds according to whether they have 
insurance (coding 1 if they do and 0 if they do not) and 
according to their condition, which is rated as good (g), fair 
(f), or serious (s). Consider an experiment that consists of 
the coding of such a patient. 

(a) Give the sample space of this experiment. 
(b) Let A be the event that the patient is in serious condi
tion. Specify the outcomes in A. 
( c) Let B be the event that the patient is uninsured. Specify 
the outcomes in B. 
(d) Give all the outcomes in the event Be u A. 

7. Consider an experiment that consists of determining 
the type of job-either blue collar or white collar
and the political affiliation - Republican, Democratic, or 
Independent-of the 15 members of an adult soccer team. 
How many outcomes are 

(a) in the sample space? 
(b) in the event that at least one of the team members is a 
blue-collar worker? 
(c) in the event that none of the team members considers 
himself or herself an Independent? 

8. Suppose that A and B are mutually exclusive events for 
which P(A) = .3 and P(B) = .5. What is the probabil
ity that 

(a) either A or B occurs? 
(b) A occurs but B does not? 
( c) both A and B occur? 

9. A retail establishment accepts either the American 
Express or the VISA credit card. A total of 24 percent 
of its customers carry an American Express card, 61 per
cent carry a VISA card, and 11 percent carry both cards. 
What percentage of its customers carry a credit card that 
the establishment will accept? 

I 0. Sixty percent of the students at a certain school wear 
neither a ring nor a necklace. Twenty percent wear a ring 
and 30 percent wear a necklace. If one of the students is 
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chosen randomly, what is the probability that this student Hint: Let M, W, and G denote, respectively, the set 
is wearing of professionals, married persons, and college graduates. 
(a) a ring or a necklace? Assume that one of the 1000 persons is chosen at random, 
(b) a ring and a necklace? and use Proposition 4.4 to show that if the given numbers 

are correct, then P(M U W U G) > 1. 

I I. A total of 28 percent of American males smoke 
cigarettes, 7 percent smoke cigars, and 5 percent smoke 
both cigars and cigarettes. 

(a) What percentage of males smokes neither cigars nor 
cigarettes? 
(b) What percentage smokes cigars but not cigarettes? 

12. An elementary school is offering 3 language classes: 
one in Spanish, one in French, and one in German. The 
classes are open to any of the 100 students in the school. 
There are 28 students in the Spanish class, 26 in the French 
class, and 16 in the German class. There are 12 students 
who are in both Spanish and French, 4 who are in both 
Spanish and German, and 6 who are in both French and 
German. In addition, there are 2 students taking all 3 
classes. 

(a) If a student is chosen randomly, what is the probability 
that he or she is not in any of the language classes? 
(b) If a student is chosen randomly, what is the probability 
that he or she is taking exactly one language class? 
(c) If 2 students are chosen randomly, what is the proba
bility that at least 1 is taking a language class? 

13. A certain town with a population of 100,000 has 3 
newspapers: I, II, and III. The proportions of townspeople 
who read these papers are as follows: 

I: 10 percent I and II: 8 percent I and II and 
III: 1 percent 

II: 30 percent I and III: 2 percent 
III: 5 percent II and III: 4 percent 

(The list tells us, for instance, that 8000 people read news
papers I and IL) 

(a) Find the number of people who read only one newspa
per. 
(b) How many people read at least two newspapers? 
(c) If I and III are morning papers and II is an evening 
paper, how many people read at least one morning paper 
plus an evening paper? 
(d) How many people do not read any newspapers? 
(e) How many people read only one morning paper and 
one evening paper? 

14. The following data were given in a study of a group 
of 1000 subscribers to a certain magazine: In reference 
to job, marital status, and education, there were 312 pro
fessionals, 470 married persons, 525 college graduates, 42 
professional college graduates, 147 married college gradu
ates, 86 married professionals, and 25 married professional 
college graduates. Show that the numbers reported in the 
study must be incorrect. 

IS. If it is assumed that all ( 5
5
2 ) poker hands are 

equally likely, what is the probability of being dealt 

(a) a flush? (A hand is said to be a flush if all 5 cards are of 
the same suit.) 
(b) one pair? (This occurs when the cards have denomina
tions a, a, b, c, d, where a, b, c, and dare all distinct.) 
(c) two pairs? (This occurs when the cards have denomi
nations a, a, b, b, c, where a, b, and care all distinct.) 
(d) three of a kind? (This occurs when the cards have 
denominations a, a, a, b, c, where a, b, and c are all dis
tinct.) 
(e) four of a kind? (This occurs when the cards have 
denominations a, a, a, a, b.) 

16. Poker dice is played by simultaneously rolling 5 dice. 
Show that 

(a) P{no two alike}= .0926; 
(b) P{one pair}= .4630; 
(c) P{two pair} = .2315; 
(d) P{three alike}= .1543; 
(e) P{full house}= .0386; 
(f) P{four alike}= .0193; 
(g) P{five alike}= .0008. 

17. If 8 rooks (castles) are randomly placed on a chess
board, compute the probability that none of the rooks can 
capture any of the others. That is, compute the probability 
that no row or file contains more than one rook. 

18. 1\vo cards are randomly selected from an ordinary 
playing deck. What is the probability that they form a 
blackjack? That is, what is the probability that one of the 
cards is an ace and the other one is either a ten, a jack, a 
queen, or a king? 

19. Two symmetric dice have had two of their sides painted 
red, two painted black, one painted yellow, and the other 
painted white. When this pair of dice is rolled, what is the 
probability that both dice land with the same color face 
up? 

20. Suppose that you are playing blackjack against a 
dealer. In a freshly shuffled deck, what is the probability 
that neither you nor the dealer is dealt a blackjack? 

21. A small community organization consists of 20 fam
ilies, of which 4 have one child, 8 have two children, 5 
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have three children, 2 have four children, and 1 has five 
children. 
(a) If one of these families is chosen at random, what is the 
probability it has i children, i = 1, 2, 3, 4, 5? 
(b) If one of the children is randomly chosen, what is the 
probability that child comes from a family having i chil
dren, i = 1,2,3,4,5? 

22. Consider the following technique for shuffling a deck 
of n cards: For any initial ordering of the cards, go through 
the deck one card at a time and at each card, flip a fair coin. 
If the coin comes up heads, then leave the card where it is; 
if the coin comes up tails, then move that card to the end 
of the deck. After the coin has been flipped n times, say 
that one round has been completed. For instance, if n = 4 
and the initial ordering is 1, 2, 3, 4, then if the successive 
flips result in the outcome h, t, t, h, then the ordering at 
the end of the round is 1, 4, 2, 3. Assuming that all possible 
outcomes of the sequence of n coin flips are equally likely, 
what is the probability that the ordering after one round is 
the same as the initial ordering? 

23. A pair of fair dice is rolled. What is the probability that 
the second die lands on a higher value than does the first? 

24, If two dice are rolled, what is the probability that 
the sum of the upturned faces equals i? Find it for i = 
2,3, ... '11, 12. 

25. A pair of dice is rolled until a sum of either 5 or 7 
appears. Fmd the probability that a 5 occurs first. 
Hint: Let En denote the event that a 5 occurs on the nth 
roll and no 5 or 7 occurs on the first n - 1 rolls. Compute 

00 

P(En) and argue that I: P(En) is the desired probability. 
n=l 

26. The game of craps is played as follows: A player rolls 
two dice. If the sum of the dice is either a 2, 3, or 12, the 
player loses; if the sum is either a 7 or an 11, the player 
wins. If the outcome is anything else, the player continues 
to roll the dice until she rolls either the initial outcome or a 
7. If the 7 comes first, the player loses, whereas if the initial 
outcome reoccurs before the 7 appears, the player wins. 
Compute the probability of a player winning at craps. 
Hint: Let E; denote the event that the initial outcome is 

12 
i and the player wins. The desired probability is I: P(E;). 

i=2 
To compute P(E;), define the events E;,n to be the event 
that the initial sum is i and the player wins on the nth roll. 

00 

Argue that P(E;) = I: P(Ei,n). 
n=l 

27. An um contains 3 red and 7 black balls. Players A and 
B withdraw balls from the um consecutively until a red 
ball is selected. Find the probability that A selects the red 
ball. (A draws the first ball, then B, and so on. There is no 
replacement of the balls drawn.) 

28. An urn contains 5 red, 6 blue, and 8 green balls. If a set 
of 3 balls is randomly selected, what is the probability that 
each of the balls will be (a) of the same color? (b) of differ
ent colors? Repeat under the assumption that whenever a 
ball is selected, its color is noted and it is then replaced in 
the um before the next selection. This is known as sam
pling with replacement. 

29. An um contains n white and m black balls, where n and 
m are positive numbers. 
(a) If two balls are randomly withdrawn, what is the prob
ability that they are the same color? 
(b) If a ball is randomly withdrawn and then replaced 
before the second one is drawn, what is the probability that 
the withdrawn balls are the same color? 
(c) Show that the probability in part (b) is always larger 
than the one in part (a). 

30. The chess clubs of two schools consist of, respectively, 
8 and 9 players. Four members from each club are ran
domly chosen to participate in a contest between the two 
schools. The chosen players from one team are then ran
domly paired with those from the other team, and each 
pairing plays a game of chess. Suppose that Rebecca and 
her sister Elise are on the chess clubs at different schools. 
What is the probability that 
(a) Rebecca and Elise will be paired? 
(b) Rebecca and Elise will be chosen to represent their 
schools but will not play each other? 
(c) either Rebecca or Elise will be chosen to represent her 
school? 

31. A 3-person basketball team consists of a guard, a for
ward, and a center. 

(a) If a person is chosen at random from each of three dif
ferent such teams, what is the probability of selecting a 
complete team? 
(b) What is the probability that all 3 players selected play 
the same position? 

32. A group of individuals containing b boys and g girls 
is lined up in random order; that is, each of the (b + g)! 
permutations is assumed to be equally likely. What is the 
probability that the person in the ith position, 1 sis b + g, 
is a girl? 

33. A forest contains 20 elk, of which 5 are captured, 
tagged, and then released. A certain time later, 4 of the 
20 elk are captured. What is the probability that 2 of these 
4 have been tagged? What assumptions are you making? 

34. The second Earl of Yarborough is reported to have bet 
at odds of 1000 to 1 that a bridge hand of 13 cards would 
contain at least one card that is ten or higher. (By ten or 
higher we mean that a card is either a ten, a jack, a queen, 
a king, or an ace.) Nowadays, we call a hand that has no 
cards higher than 9 a Yarborough. What is the probability 
that a randomly selected bridge hand is a Yarborough? 
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3S. Seven balls are randomly withdrawn from an um that 
contains 12 red, 16 blue, and 18 green balls. Find the prob
ability that 
(a) 3 red, 2 bl:ue, and 2 green balls are withdrawn; 
(b) at least 2 red balls are withdrawn; 
(c) all withdrawn balls are the same color; 
(d) either exactly 3 red balls or exactly 3 blue balls are 
withdrawn. 

(a) If she tries the keys at random, discarding those that 
do not work, what is the probability that she will open the 
door on her kth try? 
(b) What if she does not discard previously tried keys? 

46. How many people have to be in a room in order that 
the probability that at least two of them celebrate their 
birthday in the same month is at least ! ? Assume that all 
possible monthly outcomes are equally likely. 

36. 1\vo cards are chosen at random from a deck of 52 47. If there are 12 strangers in a room, what is the proba
playing cards. What is the probability that they bility that no two of them celebrate their birthday in the 

same month? 
(a) are both aces? 
(b) have the same value? 

37. An instructor gives her class a set of 10 problems with 
the information that the final exam will consist of a ran
dom selection of 5 of them. If a student has figured out 
how to do 7 of the problems, what is the probability that 
he or she will answer correctly 
(a) all 5 problems? 
(b) at least 4 of the problems? 

38. There are n socks, 3 of which are red, in a drawer. What 
is the value of n if, when 2 of the socks are chosen ran
domly, the probability that they are both red is ! ? 

39. There are 5 hotels in a certain town. If 3 people check 
into hotels in a day, what is the probability that they each 
check into a different hotel? What assumptions are you 
making? 

40. A town contains 4 people who repair televisions. If 
4 sets break down, what is the probability that exactly i 
of the repairers are called? Solve the problem for i = 
1, 2, 3, 4. What assumptions are you making? 

41. If a die is rolled 4 times, what is the probability that 6 
comes up at least once? 

42. 1\vo dice are thrown n times in succession. Compute 
the probability that double 6 appears at least once. How 
large need n be to make this probability at least ! ? 

43. (a) If N people, including A and B, are randomly 
arranged in a line, what is the probability that A and B 
are next to each other? 
(b) What would the probability be if the people were ran
domly arranged in a circle? 

44, Five people, designated as A, B, C, D, E, are arranged 
in linear order. Assuming that each possible order is 
equally likely, what is the probability that 
(a) there is exactly one person between A and B? 
(b) there are exactly two people between A and B? 

( c) there are three people between A and B? 

4S. A woman has n keys, of which one will open her door. 

48. Given 20 people, what is the probability that among 
the 12 months in the year, there are 4 months containing 
exactly 2 birthdays and 4 containing exactly 3 birthdays? 

49. A group of 6 men and 6 women is randomly divided 
into 2 groups of size 6 each. What is the probability that 
both groups will have the same number of men? 

SO. In a hand of bridge, find the probability that you have 
5 spades and your partner has the remaining 8. 

SI. Suppose that n balls are randomly distributed into N 
compartments. Find the probability that m balls will fall 
into the first compartment. Assume that all Nn arrange
ments are equally likely. 

S2. A closet contains 10 pairs of shoes. If 8 shoes are ran
domly selected, what is the probability that there will be 
(a) no complete pair? 
(b) exactly 1 complete pair? 

S3. If 4 married couples are arranged in a row, find the 
probability that no husband sits next to his wife. 

S4. Compute the probability that a bridge hand is void in 
at least one suit. Note that the answer is not 

(Why not?) 
Hint: Use Proposition 4.4. 

SS. Compute the probability that a hand of 13 cards 
contains 
(a) the ace and king of at least one suit; 
(b) all 4 of at least 1 of the 13 denominations. 

S6. 1\vo players play the following game: Player A chooses 
one of the three spinners pictured in Figure 6, and then 
player B chooses one of the remaining two spinners. Both 
players then spin their spinner, and the one that lands on 
the higher number is declared the winner. Assuming that 
each spinner is equally likely to land in any of its 3 regions, 
would you rather be player A or player B? Explain your 
answer! 
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Theoretical Exercises 

Prove the following relations: 

I. EF c E c E u F. 

2.IfE C F,thenP: C £C. 

3. F = FE U F£C and E U F = E U Ee F. 

4. ( y Ei) F = y EiF and 

(~Ei) U F=~(Ei U F). 

S. For any sequence of events Ei. E2, .. . , define a new 
sequence Fi. F2, ... of disjoint events (that is, events such 
that FiFj = 0 whenever i '# j) such that for all n 2: 1, 

n n 

LJFi=LJEi 
1 1 

figure 6 Spinners. 

6. Let E, F, and G be three events. Find expressions for 
the events so that, of E, F, and G, 

(a) only E occurs; 
(b) both E and G, but not F, occur; 
(c) at least one of the events occurs; 
( d) at least two of the events occur; 
( e) all three events occur; 
(f) none of the events occurs; 
(g) at most one of the events occurs; 
(h) at most two of the events occur; 
(i) exactly two of the events occur; 
(j) at most three of the events occur. 

7. Use Venn diagrams 
(a) to simplify the expressions (E U F)(E U P:); 
(b) to prove DeMorgan's laws for events E and F.. [That is, 
prove (EU F)c = £Cpc, and (EF)C =Ee u pc.] 

8. Let S be a given set. If, for some k > 0, Si. S2, ... , Sk 
are mutually exclusive nonempty subsets of S such that 
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k 
U Si = S, then we call the set {S1, S2, ... , Sk} a parti
i=l 
tion of S. Let Tn denote the number of different parti-
tions of {f, 2, ... , n}. Thus, T1 = 1 (the only partition 
being S1 = {1}) and T2 = 2 (the two partitions being 
{{1, 2, }}, {{l}, {2}}). 

(a) Show, by computing all partitions, that T3 = S, T4 = lS. 
(b) Show that 

Tn+l = 1 + t ( ~) Tk 
k=l 

and use this equation to compute T10. 
Hint: One way of choosing a partition of n + 1 items is to 
call one of the items special. Then we obtain different par
titions by first choosing k, k = 0, 1, ... , n, then a subset of 
size n - k of the nonspecial items, and then any of the Tk 
partitions of the remaining k nonspecial items. By adding 
the special item to the subset of size n - k, we obtain a 
partition of all n + 1 items. 

9. Suppose that an experiment is performed n times. For 
any event E of the sample space, let n(E) denote the num
ber of times that event E occurs and define/(£) = n(E)/n. 
Show that/(-) satisfies Axioms 1, 2, and 3. 

Io. Prove that P(E U F U G) = P(E) + P(F) + P(G) -
P(£C FG) - P(EFcG) - P(EFGc) - 2P(EFG). 

11. If P(E) = .9 and P(F) = .8, show that P(EF) ~ .7. In 
general, prove Bonferroni's inequality, namely, 

P(EF) ~ P(E) + P(F) - 1 

12. Show that the probability that exactly one of the events 
E or F occurs equals P(E) + P(F) - 2P(EF). 

13. Prove that P(EFc) = P(E) - P(EF). 

14. Prove Proposition 4.4 by mathematical induction. 

IS. An urn contains M white and N black balls. If a ran
dom sample of size r is chosen, what is the probability that 
it contains exactly k white balls? 

16. Use induction to generalize Bonferroni's inequality to 
n events. That is, show that 

17. Consider the matching problem, Example Sm, and 
define AN to be the number of ways in which the N 
men can select their hats so that no man selects his own. 
Argue that 

This formula, along with the boundary conditions Ai = 0, 
Az = 1, can then be solved for AN, and the desired proba
bility of no matches would be AN IN!. 
Hint: After the first man selects a hat that is not his own, 
there remain N - 1 men to select among a set of N - 1 
hats that does not contain the hat of one of these men. 
Thus, there is one extra man and one extra hat. Argue that 
we can get no matches either with the extra man select
ing the extra hat or with the extra man not selecting the 
extra hat. 

18. Let fn denote the number of ways of tossing a coin n 
times such that successive heads never appear. Argue that 

fn = fn-l + fn-2 n ~ 2, where fo = 1, fi = 2 

Hint: How many outcomes are there that start with a head, 
and how many start with a tail? If Pn denotes the proba
bility that successive heads never appear when a coin is 
tossed n times, find P n (in terms of fn) when all possible 
outcomes of then tosses are assumed equally likely. Com
pute P10. 

19. An urn contains n red and m blue balls. They are with
drawn one at a time until a total of r, r s n, red balls have 
been withdrawn. Find the probability that a total of k balls 
are withdrawn. 
Hint: A total of k balls will be withdrawn if there are r - 1 
red balls in the first k - 1 withdrawals and the kth with
drawal is a red ball. 

20. Consider an experiment whose sample space consists 
of a countably infinite number of points. Show that not all 
points can be equally likely. Can all points have a positive 
probability of occurring? 

*21. Consider Example So, which is concerned with the 
number of runs of wins obtained when n wins and m losses 
are randomly permuted. Now consider the total number 
of runs-that is, win runs plus loss runs-and show that 

( ~~i)(~=i) 
P{2k runs} = 2-'-------( m; n) 
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Self-Test Problems and Exercises 

I. A cafeteria offers a three-course meal consisting of an selected from each um, what is the probability that the 
entree, a starch, and a dessert. The possible choices are balls will be the same color? 
given in the following table: 

Course 

En tree 
Starch 
Dessert 

Choices 

Chicken or roast beef 
Pasta or rice or potatoes 
Ice cream or Jello or apple pie or a peach 

A person is to choose one course from each category. 
(a) How many outcomes are in the sample space? 
(b) Let A be the event that ice cream is chosen. How many 
outcomes are in A? 
(c) Let B be the event that chicken is chosen. How many 
outcomes are in B? 
(d) List all the outcomes in the event AB. 
(e) Let C be the event that rice is chosen. How many out
comes are in C? 
(f) List all the outcomes in the event ABC. 

2. A customer visiting the suit department of a certain 
store will purchase a suit with probability .22, a shirt with 
probability .30, and a tie with probability .28. The cus
tomer will purchase both a suit and a shirt with probability 
.11, both a suit and a tie with probability .14, and both a 
shirt and a tie with probability .10. A customer will pur
chase all 3 items with probability .06. What is the proba
bility that a customer purchases 
(a) none of these items? 
(b) exactly 1 of thes; items? 

3. A deck of cards is dealt out. What is the probability that 
the 14th card dealt is an ace? What is the probability that 
the first ace occurs on the 14th card? 

7. In a state lottery, a player must choose 8 of the num
bers from 1 to 40. The lottery commission then performs 
an experiment that selects 8 of these 40 numbers. Assum
ing that the choice of the lottery commission is equally 

likely to be any of the ( ~ ) combinations, what is the 

probability that a player has 
(a) all 8 of the numbers selected by the lottery 
commission? 
(b) 7 of the numbers selected by the lottery commission? 
(c) at least 6 of the numbers selected by the lottery 
commission? 

8. From a group of 3 first-year students, 4 sophomores, 4 
juniors, and 3 seniors, a committee of size 4 is randomly 
selected. Fmd the probability that the committee will con
sist of 
(a) 1 from each class; 
(b) 2 sophomores and 2 juniors; 
( c) only sophomores or juniors. 

9. For a finite set A, let N(A) denote the number of ele
ments in A. 

(a) Show that 

N(A U B) = N(A) + N(B) - N(AB) 

(b) More generally, show that 

N(0A;) = ~N(A;) - ~~N(A;Aj) 
1=1 I I<] 

+· · · · + (-1)n+1N(A1 ···An) 

IO. Consider an experiment that consists of 6 horses, num
bered 1 through 6, running a race, and suppose that the 
sample space consists of the 6! possible orders in which the 
horses finish. Let A be the event that the number-1 horse 
is among the top three finishers, and let B be the event that 
the number-2 horse comes in second. How many outcomes 
are in the event A u B? 

4, Let A denote the event that the midtown temperature 
in Los Angeles is 70°F, and let B denote the event that 
the midtown temperature in New York is 70°F. Also, let 
C denote the event that the maximum of the midtown 
temperatures in New York and in Los Angeles is 70°F. If 
P(A) = .3,P(B) = .4, and P(C) = .2, find the probabil
ity that the minimum of the two midtown temperatures is 
70°F. 11. A 5-card hand is dealt from a well-shuffled deck of 52 

playing cards. What is the probability that the hand con
s. An ordinary deck of 52 cards is shuffled. What is the tains at least one card from each of the four suits? 
probability that the top four cards have 
(a) different denominations? 
(b) different suits? 

6. Um A contains 3 red and 3 black balls, whereas um 
B contains 4 red and 6 black balls. If a ball is randomly 

12. A basketball team consists of 6 frontcourt and 4 back
court players. If players are divided into roommates at ran
dom, what is the probability that there will be exactly two 
roommate pairs made up of a backcourt and a frontcourt 
player? 
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13. Suppose that a person chooses a letter at random from 
R E S E R V E and then chooses one at random from 
V E RT I C A L. What is the probability that the same 
letter is chosen? 

14. Prove Boole's inequality: 

1s. Show that if P(Ai) = 1 for all i ~ 1, thenP (O Ai)= 1. 

16. Let Tk(n) denote the number of partitions of the set 
{1, ... ,n} into k nonempty subsets, where 1 :::;;; k :::;;; n. (See 
Theoretical Exercise 8 for the definition of a partition.) 
Argue that 

Find the probability that at least one ball of each color is 
chosen. 

18. Four red, 8 blue, and 5 green balls are randomly 
arranged in a line. 

(a) What is the probability that the first 5 balls are blue? 
(b) What is the probability that none of the first 5 balls is 
blue? 
(c) What is the probability that the final 3 balls are of dif
ferent colors? 
(d) What is the probability that all the red balls are 
together? 

19. Ten cards are randomly chosen from a deck of 52 cards 
that consists of 13 cards of each of 4 different suits. Each 
of the selected cards is put in one of 4 piles, depending on 
the suit of the card. 
(a) What is the probability that the largest pile has 4 cards, 
the next largest has 3, the next largest has 2, and the small
est has 1 card? 
(b) What is the probability that two of the piles have 3 
cards, one has 4 cards, and one has no cards? Hint: In how many partitions is {1} a subset, and in how 

many is 1 an element of a subset that contains other 
elements? 20. Balls are randomly removed from an um initially con-

taining 20 red and 10 blue balls. What is the probability 
17. Five balls are randomly chosen, without replacement, that all of the red balls are removed before all of the blue 
from an um that contains 5 red, 6 white, and 7 blue balls. ones have been removed? 

Answers to Selected Problems 

9. 74 10 • .4; .1 11. 70; 2 u .. 5; .32; 149/198 120; 495 36 •. 0045; .0588 37 •. 0833; .5 38. 4 39 • .48 
13. 20,000; 12,000; 11,000; 68,000; 10,000 14. 1.057 40. 1/64; 21/64; 36/64; 6/64 41 •. 5177 44 • .3; .2; 
15 •. 0020; .4226; .0475; .0211; .00024 17. 9.10947 x 10-6 .1 46. 5 48 •. 01697 49 • .4329 50. 2.6084 x 10-6 

18 •. 048 19. 5/18 20 •. 9052 22. (n + 1)/2n 23. 5/12 52 •. 09145; .4268 53. 12/35 54 •. 0511 55 •. 2198; 
25 •. 4 26 •. 492929 28 •. 0888; .2477; .1243; .2099 .0342 
30. 1/18; 1/6; 1/2 3L 2/9; 119 33. 70/323 34. 1001; 

Solutions to Self-Test Problems and Exercises 

I. (a) 2 · 3 · 4 = 24 
(b) 2 . 3 = 6 

(c) 3 · 4 = 12 
(d) AB = { (c, pasta, i), (c, rice, i), (c, potatoes, i)} 
(e) 8 
(f) ABC= { (c, rice, i)} 

(a) 1 - .51 = .49 
(b) The probability that two or more items are pur
chased is 

P(AB u AC u BC) = .11 + .14 + .10 - .06 - .06 

- .06 + .06 = .23 

2. Let A be the event that a suit is purchased, B be the Hence, the probability that exactly 1 item is purchased is 
event that a shirt is purchased, and C be the event that a .51 - .23 = .28. 
tie is purchased. Then 

P(A U B U C) = .22 + .30 + .28 - .11 - .14 - .10 

+ .06 = .51 

3. By symmetry, the 14th card is equally likely to be any of 
the 52 cards; thus, the probability is 4/52. A more formal 
argument is to count the number of the 52! outcomes for 
which the 14th card is an ace. This yields 
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4 . Sl . so ... 2 . 1 4 
p= (S2)! = S2 

Letting A be the event that the first ace occurs on the 14th 
card, we have 

48 . 47 .. -36 . 4 
P(A) = S2 · Sl .. · 40 · 39 = ·0312 

4, Let D denote the event that the minimum temperature 
is 70 degrees. Then 

P(A U B) = P(A) + P(B) - P(AB) = .7 - P(AB) 

P(C U D) = P(C} + P(D) - P(CD) = .2 + P(D) - P(DC) 

Since A u B = C u D and AB = CD, subtracting one of 
the preceding equations from the other yields 

0 = .S - P(D} 

or P(D) = .S. 

S2 . 48 . 44 . 40 
s. (a) S2 · Sl · SO . 49 = ·6761 

(b) S2 . 39 . 26 . 13 = . lOSS 
S2 . Sl . so . 49 

6. Let R be the event that both balls are red, and let B be 
the event that both are black. Then 

3. 4 3. 6 
P(R u B) = P(R) + P(B} = 6 . lO + 6 . lO = 1/2 

7. (a) ffl1 = 1.3 x 10-8 
40 
8 

(b)' =3.Jcx 10-6 

(c) ' + 1.3 x 10-8 + 3.3 x 10-6 = 1.8 x 10-4 

3.4.4.3 
B. (a) (~4) = .1439 

(b) '" = .0360 

(c) (~) = M99 

n 
9. Let S = U Ai, and consider the experiment of 

i=l 
randomly choosing an element of S. Then P(A) = 
N(A)/N(S). 

10. Since there are S! = 120 outcomes in which the 
position of horse number 1 is specified, it follows that 
N(A) = 360. Similarly, N(B) = 120, and N(AB) = 2 · 
4! = 48. Hence, from Self-Test Problem 9, we obtain 
N(A u B) = 432. 

11. One way to solve this problem is to start with the 
complementary probability that at least one suit does not 
appear. Let A;, i = l, 2, 3, 4, be the event that no .cards 
from suit i appear. Then 

The desired probability is then 1 minus the preceding. 
Another way to solve is to let A be the event that all 4 
suits are represented, and then use 

P(A} = P(n,n,n,n,o) + P(n,n,n,o,n) + P(n,n,o,n,n) 

+ P(n,o,n,n,n) 

where P(n, n, n, o, n), for instance, is the probability that 
the first card is from a new suit, the second is from a new 
suit, the third is from a new suit, the fourth is from an old 
suit (that is, one which has already appeared) and the fifth 
is from a new suit. This gives 

S2 . 39 . 26 . 13 . 48 + S2 . 39 . 26 . 36 . 13 
P(A) = -------------

S2 · Sl · SO · 49 · 48 
S2 . 39 . 24 . 26 . 13 + S2 . 12 . 39 . 26 . 13 + ~~~~~~~~~~~~~~~-

52 . Sl . so . 49 . 48 
S2 . 39 . 26 . 13( 48 + 36 + 24 + 12) 

= S2 . Sl . so . 49 . 48 
= .2637 

12. There are (10)!/25 different divisions of the 10 players 
into a first roommate pair, a second roommate pair, and 
so on. Hence, there are (10)!/(S!25) divisions irito S room-

mate pairs. There are ( ~ ) ( i ) ways of choosing the 

frontcourt and backcourt players to be in the mixed room
mate pairs and then 2 ways of pairing them up. As there is 
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then 1 way to pair up the remaining two backcourt players 
and 4!/(2!22) = 3 ways of making two roommate pairs 
from the remaining four frontcourt players, the desired 
probability -is 

( 6 ) ( 4 ) (2)(3) 
P{2 mixed pairs}= 2 2 

5 = .5714 
(10)!/(5!2 ) 

13. Let R denote the event that letter R is repeated; simi
larly, define the events E and V. Then 

P{same letter} = P(R) + P(E) + P(V) 
21 31 11 3 = -- + -- + -- = -
78 78 78 28 

i-1 
( )

c 

14.LetB1=A1,B;=A; .LJAj ,i > 1.Then 
J=l 

where the final equality uses the fact that the B; are mutu
ally exclusive. The inequality then follows, since Bi C Ai. 

IS. 

00 

~ 1 - LP(Ai) 
i=l 

=1 

16. The number of partitions for which {1} is a subset 
is equal to the number of partitions of the remaining 
n - 1 elements into k - 1 nonempty subsets, namely, 
Tk-1(n - 1). Because there are Tk(n - 1) partitions of 
{2, ... , n - 1} into k nonempty subsets and then a choice 
of k of them in which to place element 1, it follows that 
there are kTk(n - 1) partitions for which {1} is not a sub
set. Hence, the result follows. 

17. Let R, W, B denote, respectively, the events that there 
are no red, no white, and no blue balls chosen. Then 

P(R U W u B) = P(R) + P(W) + P(B) - P(RW) 

- P(RB) - P(WB) + P(RWB) 

(~) 
+ 

(152) (151) (~) 
= ( ~8) (158) + (158) ( 158) 

(~) (~) 
( 158) ( ~8) 

R! 0.2933 

Thus, the probability that all colors appear in the chosen 
subset is approximately 1 - 0.2933 = 0.7067. 

18 ( ) 8·7·6·5·4 2 
· a 17-16.15-14-13 = fil 

(b) Because there are 9 nonblue balls, the probability is 
9·8·1·6·5 9 

11.16-15-14-13 = m· 
(c) Because there are 3! possible orderings of the different 
colors and all possibilities for the final 3 balls are equally 
likely, the probability is /j:Ui~ = -,(,. 
( d) The probability that the red balls are in a specified 4 
spots is 171~:U14 . Because there are 14 possible locations 
of the red balls where they are all together, the probability 
. 14.4.3.2.1 1 
lS 17.16-15·14 = Tm· 

19. (a) The probability that the 10 cards consist 
of 4 spades, 3 hearts, 2 diamonds, and 1 club is 

13 13 13 13 
4 3 

52 
2 1 • Because there are 4! possible choices of 

10 

the suits to have 4, 3, 2, and 1 cards, respectively, it follows 

that the probability is 24 ? 1i52 1t \3 

10 

(b) Because there are ( ~) = 6 choices of the two suits that 
are to have 3 cards and then 2 choi s for the suit to have 

12 13 13 13 

4 cards, the probability is 3 3 4 

20. All the red balls are removed before all the blue ones 
if and only if the very last ball removed is blue. Because all 
30 balls are equally likely to be the last ball removed, the 
probability is 10/30. 

59 



60 



CONDITIONAL PROBABILITY 

AND INDEPENDENCE 

Contents 
I Introduction 
2 Conditional Probabilities 
3 Bayes's Formula 

Introduction 

4 Independent Events 
s P( ·IF) Is a Probability 

In this chapter, we introduce one of the most important concepts in probability 
theory, that of conditional probability. The importance of this concept is twofold. 
In the first place, we are often interested in calculating probabilities when some 
partial information concerning the result of an experiment is available; in such a 
situation, the desired probabilities are conditional. Second, even when no partial 
information is available, conditional probabilities can often be used to compute the 
desired probabilities more easily. 

2 Conditional Probabilities 
Suppose that we toss 2 dice, and suppose that each of the 36 possible outcomes is 
equally likely to occur and hence has probability ~. Suppose further that we observe 
that the first die is a 3. Then, given this information, what is the probability that the 
sum of the 2 dice equals 8? To calculate this probability, we reason as follows: Given 
that the initial die is a 3, there can be at most 6 possible outcomes of our experiment, 
namely, (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), and (3, 6). Since each of these outcomes 
originally had the same probability of occurring, the outcomes should still have equal 
probabilities. That is, given that the first die is a 3, the (conditional) probability of 
each of the outcomes (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), and (3, 6) is %, whereas the 
(conditional) probability of the other 30 points in the sample space is 0. Hence, the 
desired probability will be g. 

If we let E and F denote, respectively, the event that the sum of the dice is 8 
and the event that the first die is a 3, then the probability just obtained is called the 
conditional probability that E occurs given that F has occurred and is denoted by 

P(EIF) 

A general formula for P(EIF) that is valid for all events E and F is derived in the 
same manner: If the event F occurs, then, in order for E to occur, it is necessary 

From Chapter 3 of A First Course in Probability, Ninth Edition. Sheldon Ross. 
Copyright© 2014 by Pearson Education, Inc. All rights reserved. 
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Example 
2a 

Example 
2b 

Conditional Probability and Independence 

that the actual occurrence be a point both in E and in F; that is, it must be in EF. 
Now, since we know that F has occurred, it follows that F becomes our new, or 
reduced, sample space; hence, the probability that the event EF occurs will equal 
the probability of EF relative to the probability of F. That is, we have the following 
definition. 

Definition 

If P(F) > 0, then 
P(EIF) = P(EF) 

P(F) 
(2.1) 

Joe is 80 percent certain that his missing key is in one of the two pockets of his 
hanging jacket, being 40 percent certain it is in the left-hand pocket and 40 percent 
certain it is in the right-hand pocket. If a search of the left-hand pocket does not find 
the key, what is the conditional probability that it is in the other pocket? 

Solution If we let L be the event that the key is in the left-hand pocket of the jacket, 
and R be the event that it is in the right-hand pocket, then the desired probability 
P(RIU) can be obtained as follows: 

P(RIU) = P(RU) 
P(U) 

P(R) 
= 

1 - P(L) 

=2/3 • 
If each outcome of a finite sample space S is equally likely, then, conditional on 

the event that the outcome lies in a subset F C S, all outcomes in F become equally 
likely. In such cases, it is often convenient to compute conditional probabilities of 
the form P(EIF) by using F as the sample space. Indeed, working with this reduced 
sample space often results in an easier and better understood solution. Our next two 
examples illustrate this point. 

A coin is flipped twice. Assuming that all four points in the sample space S = {(h,h), 
(h, t), (t, h), (t, t)} are equally likely, what is the conditional probability that both flips 
land on heads, given that (a) the first flip lands on heads? (b) at least one flip lands 
on heads? 

Solution Let B = {(h,h)} be the event that both flips land on heads; let F = {(h,h), 
(h, t)} be the event that the first flip lands on heads; and let A = {(h,h), (h, t), (t,h)} be 
the event that at least one flip lands on heads. The probability for (a) can be obtained 
from 

P(BIF) = P(BF) 
P(F) 

P({(h,h)}) 
=------

P({(h,h), (h,t)}) 

= _1/4=1/2 
2/4 
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For (b), we have 

P(BIA) = P(BA) 
P(A) 

P({(h,h)}) 
=--------

P({ (h, h), (h, t), (t, h)}) 

= 1/4 = 1/3 
3/4 

Thus, the conditional probability that both flips land on heads given that the first 
one does is 1/2, whereas the conditional probability that both flips land on heads 
given that at least one does is only 1/3. Many students initially find this latter result 
surprising. They reason that given that at least one flip lands on heads, there are two 
possible results: Either they both land on heads or only one does. Their mistake, 
however, is in assuming that these two possibilities are equally likely. Initially there 
are 4 equally likely outcomes. Because the information that at least one flip lands on 
heads is equivalent to the information that the outcome is not (t, t), we are left with 
the 3 equally likely outcomes (h, h), (h, t), (t, 'Ii), only one of which results in both flips 
landing on heads. • 

In the card game bridge, the 52 cards are dealt out equally to 4 players-called East, 
West, North, and South. If North and South have a total of 8 spades among them, 
what is the probability that East has 3 of the remaining 5 spades? 

Solution Probably the easiest way to compute the desired probability is to work 
with the reduced sample space. That is, given that North-South have a total of 8 
spades among their 26 cards, there remains a total of 26 cards, exactly 5 of them 
being spades, to be distributed among the East-West hands. Since each distribution 
is equally likely, it follows that the conditional probability that East will have exactly 
3 spades among his or her 13 cards is 

l:::::! .339 • 
Multiplying both sides of Equation (2.1) by P(F), we obtain 

P(EF) = P(F)P(EIF) (2.2) 

In words, Equation (2.2) states that the probability that both E and F occur is equal 
to the probability that F occurs multiplied by the conditional probability of E given 
that F occurred. Equation (2.2) is often quite useful in computing the probability of 
the intersection of events. 

Celine is undecided as to whether to take a French course or a chemistry course. She 
estimates that her probability of receiving an A grade would be ~ in a French course 
and ~ in a chemistry course. If Celine decides to base her decision on the flip of a 
fair coin, what is the probability that she gets an A in chemistry? 

Solution Let C be the event th11t Celine takes chemistry and A denote the event 
that she receives an A in whatever course she takes, then the desired probability is 
P(CA), which is calculated by using Equation (2.2) as follows: 
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P(CA) = P(C)P(AIC) 

= (~) (~) = ~ • 

Suppose that an urn contains S red balls and 4 white balls. We draw 2 balls from the 
urn without replacement. (a) If we assume that at each draw, each ball in the urn is 
equally likely to be chosen, what is the probability that both balls drawn are red? (b) 
Now suppose that the balls have different weights, with each red ball having weight 
rand each white ball having weight w. Suppose that the probability that a given ball 
in the urn is the next one selected is its weight divided by the sum of the weights of 
all balls currently in the urn. Now what is the probability that both balls are red? 

Solution Let R1 and R2 denote, respectively, the events that the first and second 
balls drawn are red. Now, given that the first ball selected is red, there are 7 remain
ing red balls and 4 white balls, so P(R2IR1) = rt· As P(R1) is clearly 1~, the desired 
probability is 

P(R1R2) = P(R1)P(R2IR1) 

= (~) (i11) = ~~ 
Of course, this probability could have been computed by P(R1R2) = ~)1(1i). 

For part (b), we again let Ri be the event that the ith ball chosen is red and use 

Now, number the red balls, and let B;, i = 1, ... , S be the event that the first ball 
drawn is red ball number i. Then 

8 

8 " r P(R1) = P(Ui=lBi) = ~P(B;) = S Sr + 4w 
i=l 

Moreover, given that the first ball is red, the urn then contains 7 red and 4 white 
balls. Thus, by an argument similar to the preceding one, 

1r 
P(R2IR1) = 7 4 r + w 

Hence, the probability that both balls are red is 

Sr 1r 
P(R1R2) = S 4 7 4 r+ w r+ w • 

A generalization of Equation (2.2), which provides an expression for the prob
ability of the intersection of an arbitrary number of events, is sometimes referred to 
as the multiplication rule. 

The multiplication rule 

P(E1E2E3 ···En) = P(E1)P(E2IE1)P(E3IE1E2) · · · P(EnlE1 · · · En-1) 
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To prove the multiplication rule, just apply the definition of conditional proba
bility to its right-hand side, giving 

For example, consider that PN, the probability that there are no matches when N 
people randomly select from among their own N hats, is given by 

N 

PN = ~)-l)i /i! 
i=O 

What is the probability that exactly k of the N people have matches? 

Solution Let us fix our attention on a particular set of k people and determine the 
probability that these k individuals have matches and no one else does. Letting E 
denote the event that everyone in this set has a match, and letting G be the event 
that none of the other N - k people have a match, we have 

P(EG) = P(E)P(GiE) 

Now, let Fi, i = 1, ... , k, be the event that the ith member of the set has a match. 
Then 

P(E) = P(F1F2 · · · Fk) 

= P(F1)P(F2IF1)P(F3IF1F2) · · · P(FkiF1 · · · Fk-1) 
1 1 1 1 

=NN-1N-2···N-k+1 
(N - k)! 

= N! 

Given that everyone in the set of k has a match, the other N - k people will be 
randomly choosing among their own N - k hats, so the probability that none of 
them has a match is equal to the probability of no matches in a problem having 
N - k people choosing among their own N - k hats. Therefore, 

N-k 
P(GIE) = PN-k = _L(-l)i/i! 

i=O 

showing that the probability that a specified set of k people have matches and no 
one else does is 

(N - k)! 
P(EG) = N! PN-k 

Because there will be exactly k matches if the preceding is true for any of the (~) 
sets of k individuals, the desired probability is 

P(exactly k matches)= PN-k/k! 

Rj e-1 /k! when N is large • 
An ordinary deck of 52 playing cards is randomly divided into 4 piles of 13 cards 
each. Compute the probability that each pile has exactly 1 ace. · 
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Solution Define events Ei, i = 1, 2, 3, 4, as follows: 

E1 = {the ace of spades is in any one of the piles} 

E2 = {the ace of spades and the ace of hearts are in different piles} 

E3 = {the aces of spades, hearts, and diamonds are all in different piles} 

E4 = {all 4 aces are in different piles} 

The desired probability is P(E1E2E3E4), and by the multiplication rule, 

Now, 

P(E1) = 1 

since E1 is the sample space S. To determine P(E2!E1), consider the pile that con
tains the ace of spades. Because its remaining 12 cards are equally likely to be any 
12 of the remaining 51 cards, the probability that the ace of hearts is among them is 
12/51, giving that 

12 39 
P(E2!E1) = 1 - 51 = 51 

Also, given that the ace of spades and ace of hearts are in different piles, it follows 
that the set of the remaining 24 cards of these two piles is equally likely to be any set 
of 24 of the remaining 50 cards. As the probability that the ace of diamonds is one 
of these 24 is 24/50, we see that 

24 26 
= 

50 50 

Because the same logic as used in the preceding yields that 

36 13 
P(E4IE1E2E3) = 1 - 49 = 49 

the probability that each pile has exactly 1 ace is 

That is, there is approximately a 10.5 percent chance that each pile will contain an 
ace. (Problem 13 gives another way of using the multiplication rule to solve this 
problem.) • 

Remarks Our definition of P(EIF) is consistent with the interpretation of 
probability as being a long-run relative frequency. To see this, suppose that n 
repetitions of the experiment are to be performed, where n is large. We claim that 
if we consider only those experiments in which F occurs, then P(EIF) will equal 
the long-run proportion of them in which E also occurs. To verify this statement, 
note that since P(F) is the long-run proportion of experiments in which F occurs, 
it follows that in the n repetitions of the experiment, F will occur approximately 
nP(F) times. Similarly, in approximately nP(EF) of these experiments, both E and 
F will occur. Hence, out of the approximately nP(F) experiments in which 
F occurs, the proportion of them in which E also occurs is approximately equal to 

nP(EF) 

nP(F). 

P(EF) 

P(F) 
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Because this approximation becomes exact as n becomes larger and larger, we have 
the appropriate definition of P(EIF) . 

3 Bayes's Formula 

Example 
3a 

Let E and F be events. We may express E as 

E=EF u £pc 

for, in order for an outcome to be in E, it must either be in both E and F or be in E 
but not in F. (See Figure 1.) As EF and £pc are clearly mutually exclusive, we have, 
by Axiom 3, 

P(E) = P(EF) + P(EFc) 
= P(EIF )P(F) + P(EiFc)P(Fc) (3.1) 
= P(EiF)P(F) + P(£ipc)[1 - P(F)] 

Equation (3.1) states that the probability of the event Eis a weighted average of the 
conditional probability of E given that F has occurred and the cond1tional proba
bility of E given that F has not occurred-each conditional probability being given 
as much weight as the event on which it is conditioned has of occurring. This is an 
extremely useful formula, because its use often enables us to determine the prob
ability of an event by first "conditioning" upon whether or not some second event 
has occurred. That is, there are many instances in which it is difficult to compute the 
probability of an event directly, but it is straightforward to compute it once we know 
whether or not some second event has occurred. We illustrate this idea with some 
examples. 

Figure I E = EF U EF. EF = Shaded Area; EF = Striped Area. 

(Part I} 

An insurance company believes that people can be divided into two classes: those 
who are accident prone and those who are not. The company's statistics show that 
an accident-prone person will have an accident at some time within a fixed 1-year 
period with probability .4, whereas this probability decreases to .2 for a person who 
is not accident prone. If we assume that 30 percent of the population is accident 
prone, what is the probability that a new policyholder will have an accident within a 
year of purchasing a policy? 

Solution We shall obtain the desired probability by first conditioning upon whether 
or not the policyholder is accident prone. Let A 1 denote the event that the policy
holder will have an accident within a year of purchasing the policy, and let A denote 
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the event that the policyholder is accident prone. Hence, the desired probability is 
given by 

(Part 2) 

P(A1) = P(A1IA)P(A) + P(A1IAc)P(Ac) 

= (.4)(.3) + (.2)(.7) = .26 • 

Suppose that a new policyholder has an accident within a year of purchasing a policy. 
What is the probability that he or she is accident prone? 

Solution The desired probability is 

P(AIA) = P(AAi) 
1 P(A1) 

P(A)P(A1IA) 
= 

P(A1) 
(.3)(.4) 

= =-
.26 

6 • 13 

Consider the following game played with an ordinary deck of 52 playing cards: The 
cards are shuffled and then turned over one at a time. At any time, the player can 
guess that the next card to be turned over will be the ace of spades; if it is, then the 
player wins. In addition, the player is said to win if the ace of spades has not yet 
appeared when only one card remains and no guess has yet been made. What is a 
good strategy? What is a bad strategy? 

Solution Every strategy has probability 1/52 of winning! To show this, we will use 
induction to prove the stronger result that for an n card deck, one of whose cards 
is the ace of spades, the probability of winning is 1/n, no matter what strategy is 
employed. Since this is clearly true for n = 1, assume it to be true for an n - 1 
card deck, and now consider an n card deck. Fix any strategy, and let p denote the 
probability that the strategy guesses that the first card is the ace of spades. Given 
that it does, the player's probability of winning is 1/n. If, however, the strategy does 
not guess that the first card is the ace of spades, then the probability that the player 
wins is the probability that the first card is not the ace of spades, namely, (n - 1)/n, 
multiplied by the conditional probability of winning given that the first card is not 
the ace of spades. But this latter conditional probability is equal to the probability of 
winning when using an n - 1 card deck containing a single ace of spades; it is thus, 
by the induction hypothesis, 1/(n - 1). Hence, given that the strategy does not guess 
the first card, the probability of winning is 

n - 1 1 1 
----=-

n n - 1 n 

Thus, letting G be the event that the first card is guessed, we obtain 

P{win} = P{winlG}P(G) + P{win1Gc}(1 - P(G)) = .!:_p + .!:_(1 - p} 
n n 

1 • =-
n 

In answering a question on a multiple-choice test, a student either knows the answer 
or guesses. Let p be the probability that the student knows the answer and 1 - p 
be the probability that the student guesses. Assume that a student who guesses at 
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the answer will be correct with probability l/m, where m is the number of multiple
choice alternatives. What is the conditional probability that a student knew the 
answer to a question given that he or she answered it correctly? 

Solution Let C and K denote, respectively, the events that the student answers the 
question correctly and the event that he or she actually knows the answer. Now, 

P(KIC) = P(KC) 
P(C) 

P(CiK)P(K) 

P(CiK)P(K) + P(CiKc)P(Kc) 
p = ~~~~~~~ 

p + (1/m)(l - p) 
mp 

=-----
1 + (m - l)p 

For example, if m = 5,p = i, then the probability that the student knew the answer 
to a question he or she answered correctly is ~. • 

A laboratory blood test is 95 percent effective in detecting a certain disease when 
it is, in fact, present. However, the test also yields a "false positive" result for 1 
percent of the healthy persons tested. (That is, if a healthy person is tested, then, 
with probability .01, the test result will imply that he or she has the disease.) If .5 
percent of the population actually has the disease, what is the probability that a 
person has the disease given that the test result is positive? 

Solution Let D be the event that the person tested has the disease and E the event 
that the test result is positive. Then the desired probability is 

P(DIE) = P(DE) 
P(E) 

P(EID)P(D) = ~~~~~~~~~~~ 
P(EID)P(D) + P(EIDc)P(Dc) 

(.95)(.005) 
= ~~~~~~~~-

(. 95) (. 005) + (.01)(.995) 
95 

= 294 ~ .323 

Thus, only 32 percent of those persons whose test results are positive actually have 
the disease. Many students are often surprised at this result (they expect the per
centage to be much higher, since the blood test seems to be a good one), so it is 
probably worthwhile to present a second argument that, although less rigorous than 
the preceding one, is probably more revealing. We now do so. 

Since .5 percent of the population actually has the disease, it follows that, on 
the average, 1 person out of every 200 tested will have it. The test will correctly 
confirm that this person has the disease with probability .95. Thus, on the aver
age, out of every 200 persons tested, the test will correctly confirm that .95 person 
has the disease. On the other hand, out of the (on the average) 199 healthy peo
ple, the test will incorrectly state that (199)(.01) of these people have the disease. 
Hence, for every .95 diseased person that the test correctly states is ill, there are (on 
the average) (199)(.01) healthy persons who the test incorrectly states are ill. Thus, 
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the proportion of time that the test result is correct when it states that a person is 
ill is 

.95 - ~ ~ 2 
. 95 + (199)(.01) - 294 ·3 3 • 

Equation (3.1) is also useful when one has to reassess one's personal probabil
ities in the light of additional information. For instance, consider the examples that 
follow. 

Consider a medical practitioner pondering the following dilemma: "If I'm at least 80 
percent certain that my patient has this disease, then I always recommend surgery, 
whereas if I'm not quite as certain, then I recommend additional tests that are expen
sive and sometimes painful. Now, initially I was only 60 percent certain that Jones 
had the disease, so I ordered the series A test, which always gives a positive result 
when the patient has the disease and almost never does when he is healthy. The test 
result was positive, and I was all set to recommend surgery when Jones informed me, 
for the first time, that he was diabetic. This information complicates matters because, 
although it doesn't change my original 60 percent estimate of his chances of having 
the disease in question, it does affect the interpretation of the results of the A test. 
This is so because the A test, while never yielding a positive result when the patient 
is healthy, does unfortunately yield a positive result 30 percent of the time in the case 
of diabetic patients who are not suffering from the disease. Now what do I do? More 
tests or immediate surgery?" 

Solution In order to decide whether or not to recommend surgery, the doctor should 
first compute her updated probability that Jones has the disease given that the A test 
result was positive. Let D d.enote the event that Jones has the disease and Ethe event 
that the A test result is positive. The desired conditional probability is then 

p DE)= P(DE) 
( I P(E} 

P(D)P(EID) 
= -----------~ P(EiD)P(D) + P(EiDc)P(Dc) 

(.6)1 
=------

1(.6) + (.3)(.4) 

= .833 

Note that we have computed the probability· of a positive test result by condition
ing on whether or not Jones has the disease and then using the fact that because 
Jones is a diabetic, his conditional probability of a positive result given that he 
does not have the disease, P(EIDc), equals .3. Hence, as the doctor should now 
be more than 80 percent certain that Jones has the disease, she should recommend 
surgery. • 

At a certain stage of a criminal investigation, the inspector in charge is 60 percent 
convinced of the guilt of a certain suspect. Suppose, however, that a new piece of 
evidence which shows that the criminal has a certain characteristic (such as left
handedness, baldness, or brown hair) is uncovered. If 20 percent of the population 
possesses this characteristic, how certain of the guilt of the suspect should the inspec
tor now be if it turns out that the suspect has the characteristic? 
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Solution Letting G denote the event that the suspect is guilty and C the event that 
he possesses the characteristic of the criminal, we have 

P(GIC) = P(GC) 
P(C) 

P(CIG)P(G) 
=-----------P(CIG)P(G) + P(CIGc)P(Gc) 

1(.6) 
=------

1(.6) + (.2)(.4) 
~ .882 

where we have supposed that the probability of the suspect having the characteristic 
if he is, in fact, innocent is equal to .2, the proportion of the population possessing 
the characteristic. • 

In the world bridge championships held in Buenos Aires in May 1965, the famous 
British bridge partnership of Terrence Reese and Boris Schapiro was accused of 
cheating by using a system of finger signals that could indicate the number of hearts 
held by the players. Reese and Schapiro denied the accusation, and eventually a 
hearing was held by the British bridge league. The hearing was in the form of a legal 
proceeding with prosecution and defense teams, both having the power to call and 
cross-examine witnesses. During the course of the proceeding, the prosecutor exam
ined specific hands played by Reese and Schapiro and claimed that their playing 
these hands was consistent with the hypothesis that they were guilty of having illicit 
knowledge of the heart suit. At this point, the defense attorney pointed out that 
their play of these hands was also perfectly consistent with their standard line of 
play. However, the prosecution then argued that as long as their play was consistent 
with the hypothesis of guilt, it must be counted as evidence toward that hypothesis. 
What do you think of the reasoning of the prosecution? 

Solution The problem is basically one of determining how the introduction of new 
evidence (in this example, the playing of the hands) affects the probability of a par
ticular hypothesis. If we let H denote a particular hypothesis (such as the hypothesis 
that Reese and Schapiro are guilty) and Ethe new evidence, then 

P(HiE) = P(HE) 
P(E) 

P(EIH)P(H) 
= --------------P ( E i H) P ( H) + P(EIHc)[l - P(H)] 

(3.2) 

where P(H) is our evaluation of the likelihood of the hypothesis before the intro
duction of the new evidence. The new evidence will be in support of the hypothesis 
whenever it makes the hypothesis more likely-that is, whenever P(HiE) ;::.: P(H). 
From Equation (3.2), this will be the case whenever 

P(EIH) ;::.: P(EIH)P(H) + P(EIHc)[l - P(H)] 

or, equivalently, whenever 
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In other words, any new evidence can be considered to be in support of a partic
ular hypothesis only if its occurrence is more likely when the hypothesis is true 
than when it is false. In fact, the new probability of the hypothesis depends on 
its initial probability and the ratio of these conditional probabilities, since, from 
Equation (3.2), 

P(HIE) - P(H) 

- P(H) + [1 - P(H)] ~~i~; 

Hence, in the problem under consideration, the play of the cards can be con
sidered to support the hypothesis of guilt only if such play would have been more 
likely if the partnership were cheating than if it were not. As the prosecutor never 
made this claim, his assertion that the evidence is in support of the guilt hypothesis is 
invalid. • 

1\vins can be either identical or fraternal. Identical, also called monozygotic, twins 
form when a single fertilized egg splits into two genetically identical parts. Con
sequently, identical twins always have the same set of genes. Fraternal, also called 
dizygotic, twins develop when two eggs are fertilized and implant in the uterus. The 
genetic connection of fraternal twins is no more or less the same as siblings born at 
separate times. A Los Angeles County, California, scientist wishing to know the cur
rent fraction of twin pairs born in the county that are identical twins has assigned a 
county statistician to study this issue. The statistician initially requested each hospital 
in the county to record all twin births, indicating whether or not the resulting twins 
were identical. The hospitals, however, told her that to determine whether newborn 
twins were identical was not a simple task, as it involved the permission of the twins' 
parents to perform complicated and expensive DNA studies that the hospitals could 
not afford. After some deliberation, the statistician just asked the hospitals for data 
listing all twin births along with an indication as to whether the twins were of the 
same sex. When such data indicated that approximately 64 percent of twin births 
were same-sexed, the statistician declared that approximately 28 percent of all twins 
were identical. How did she come to this conclusion? 

Solution The statistician reasoned that identical twins are always of the same sex, 
whereas fraternal twins, having the same relationship to each other as any pair of 
siblings, will have probability 1/2 of being of the same sex. Letting I be the event 
that a pair of twins is identical, and SS be the event that a pair of twins is of the same 
sex, she computed the probability P(SS) by conditioning on whether the twin pair 
was identical. This gave 

P(SS) = P(SSII)P(l) + P(SSIJC)P(lc) 

or 
1 1 1 

P(SS) = 1 x P(l) + Z x [1 - P(l)] = 2 + 2P(l) 

which, using that P(SS) ~ .64 yielded the result 

P(l) ~ .28 • 
The change in the probability of a hypothesis when new evidence is introduced 

can be expressed compactly in terms of the change in the odds of that hypothesis, 
where the concept of odds is defined as follows. 
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Definition 
The odds of an event A are defined by 

P(A) P(A) 
--=----
P(AC) 1 - P(A) 

That is, the odds of an event A tell how much more likely it is that the event A 
occurs than it is that it does not occur. For instance, if P(A) = ~.then P(A) = 
2P(Ac), so the odds are 2. If the odds are equal to a, then it is common to say 
that the odds are "a to l" in favor of the hypothesis. 

Consider now a hypothesis H that is true with probability P(H), and suppose 
that new evidence E is introduced. Then, the conditional probabilities, given the 
evidence E, that H is true and that His not true are respectively given by 

P(HIE) = P(EIH)P(H) 
P(E) 

Therefore, the new odds after the evidence E has been introduced are 

P(HiE) P(H) P(EIH) 
---=----- (3.3) 

That is, the new value of the odds of His the old value multiplied by the ratio of the 
conditional probability of the new evidence given that H is true to the conditional 
probability given that His not true. Thus, Equation (3.3) verifies the result of Exam
ple 3f, since the odds, and thus the probability of H, increase whenever the new evi
dence is more likely when His true than when it is false. Similarly, the odds decrease 
whenever the new evidence is more likely when H is false than when it is true. 

An urn contains two type A coins and one type B coin. When a type A coin is flipped, 
it comes up heads with probability 1/4, whereas when a type B coin is flipped, it 
comes up heads with probability 3/4. A coin is randomly chosen from the urn and 
flipped. Given that the flip landed on heads, what is the probability that it was a type 
A coin? 

Solution Let A be the event that a type A coin was flipped, and let B = Ac be the 
event that a type B coin was flipped. We want P(Alheads), where heads is the event 
that the flip landed on heads. From Equation (3.3), we see that 

P(Alheads) P(A) P(headslA) 
P(Aclheads) = P(B) P(headslB) 

2/3 1/4 
=--

1/3 3/4 
= 2/3 

Hence, the odds are 2/3 : 1, or, equivalently, the probability is 2/5 that a type A coin 
was flipped. • 

Equation (3.1) may be generalized as follows: Suppose that F1,F2, ... ,Fn are 
mutually exclusive events such that 
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In other words, exactly one of the events F1, F2, ... , Fn must occur. By writing 

and using the fact that the events EF;,i = 1, ... ,n are mutually exclusive, we obtain 

i=l 
n 

= L P(EIF;)P(F;) 
i=l 

(3.4) 

Thus, Equation (3.4), often referred to as the law of total probability, shows how, 
for given events Fi. F2, ... , Fn, of which one and only one must occur, we can com
pute P(E} by first conditioning on which one of the Fi occurs. That is, Equation (3.4) 
states that P(E) is equal to a weighted average of P(EIF;), each term being weighted 
by the probability of the event on which it is conditioned. 

For example, for a randomly shuffled deck, if the card following the first ace is some 
specified card, then as per a combatorial argument the probability is -5-z. Here is a 
probabilistic argument based on conditioning: Let E be the event that the card fol
lowing the first ace is some specified card, say, card x. To compute P(E), we ignore 
card x and condition on the relative ordering of the other 51 cards in the deck. Let
ting 0 be the ordering gives 

P(E) = L P(EIO)P(O) 
0 

Now, given 0, there are 52 possible orderings of the cards, corresponding to hav
ing card x being the ith card in the deck, i = 1, ... ,52. But because all 52! possible 
orderings were initially equally likely, it follows that, conditional on 0, each of the 
52 remaining possible orderings is equally likely. Because card x will follow the 
first ace for only one of these orderings, we have P(EIO) = 1/52, implying that 
P(E) = 1/52. • 

Again, let F1, ... ,Fn be a set of mutually exclusive and exhaustive events (mean
ing that exactly one of these events must occur). 

Suppose now that E has occurred and we are interested in determining which 
one of the Fj also occurred. Then, by Equation (3.4), we have the following 
proposition. 

P(P.IE) = P(EFj) 
l P(E) 

= 
P(EIFj)P(Fj) 

n 

L P(EiFi)P(Fi) 
i=l 

(3.5) 
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Equation (3.5) is known as Bayes's formula, after the English philosopher Thomas 
Bayes. If we think of the events Fj as being possible "hypotheses" about some sub
ject matter, then Bayes's formula may be interpreted as showing us how opinions 
about these hypotheses held before the experiment was carried out [that is, the 
P(Fj)] should be modified by the evidence produced by the experiment. 

A plane is missing, and it is presumed that it was equally likely to have gone down 
in any of 3 possible regions. Let 1 - {3;, i = 1, 2, 3, denote the probability that 
the plane will be found upon a search of the ith region when the plane is, in fact, 
in that region. (The constants {3; are called overlook probabilities, because they rep
resent the probability of overlooking the plane; they are generally attributable to 
the geographical and environmental conditions of the regions.) What is the condi
tional probability that the plane is in the ith region given that a search of region 1 is 
unsuccessful? 

Solution Let Ri, i = 1, 2, 3, be the event that the plane is in region i, and let Ebe 
the event that a search of region 1 is unsuccessful. From Bayes's formula, we obtain 

Forj=2, 3, 

P(R IE) = P(ER1) 
1 P(E) 

= 
P(EiR1)P(R1) 
3 

L P(EIRi)P(Ri) 
i=1 

= (/31)1 + (l)j + (l)l 

/31 =---
/31 + 2 

p R- E _ P(EIRj)P(Rj) 
( 11 ) - P(E) 

(l)j 
= 1 1 1 

(/31)3 + 3 + 3 

1 
=---

/31 + 2 
j=2, 3 

Note that the updated (that is, the conditional) probability that the plane is in 
region j, given the information that a search of region 1 did not find it, is greater 
than the initial probability that it was in region j when j :f:. 1 and is less than the 
initial probability when j = 1. This statement is certainly intuitive, since not finding 
the plane in region 1 would seem to decrease its chance of being in that region and 
increase its chance of being elsewhere. Further, the conditional probability that the 
plane is in region 1 given an unsuccessful search of that region is an increasing func
tion of the overlook probability {31. This statement is also intuitive, since the larger 
{31 is, the more it is reasonable to attribute the unsuccessful search to "bad luck" 
as opposed to the plane's not being there. Similarly, P(RjlE),j :f:. 1, is a decreasing 
function of /31. • 
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The next example has often been used by unscrupulous probability students to 
win money from their less enlightened friends. 

Suppose that we have 3 cards that are identical in form, except that both sides of the 
first card are colored red, both sides of the second card are colored black, and one 
side of the third card is colored red and the other side black. The 3 cards are mixed 
up in a hat, and 1 card is randomly selected and put down on the ground. If the upper 
side of the chosen card is colored red, what is the probability that the other side is 
colored black? 

Solution Let RR, BB, and RB denote, respectively, the events that the chosen card 
is all red, all black, or the red-black card. Also, let R be the event that the upturned 
side of the chosen card is red. Then, the desired probability is obtained by 

P(RBIR) = P(RB n R) 
P(R) 

P(RIRB)P(RB) 
=~~~~~~~~~~~~~~~~~~~~ 

P(RiRR)P(RR) + P(RIRB)P(RB) + P(RIBB)P(BB) 

0)0) 1 

= (1) (l) + (!) (l) + 0 (l) = 3 

Hence, the answer is l · Some students guess ! as the answer by incorrectly reasoning 
that given that a red side appears, there are two equally likely possibilities: that the 
card is the all-red card or the red-black card. Their mistake, however, is in assuming 
that these two possibilities are equally likely. For, if we think of each card as con
sisting of two distinct sides, then we see that there are 6 equally likely outcomes of 
the experiment-namely, Ri,R2,B1,B2,R3,B3-where the outcome is Ri if the first 
side of the all-red card is turned face up, R2 if the second side of the all-red card 
is turned face up, R3 if the red side of the red-black card is turned face up, and so 
on. Since the other side of the upturned red side will be black only if the outcome is 
R3, we see that the desired probability is the conditional probability of R3 given that 
either Ri or R2 or R3 occurred, which obviously equals i. • 

A new couple, known to have two children, has just moved into town. Suppose that 
the mother is encountered walking with one of her children. If this child is a girl, 
what is the probability that both children are girls? 

Solution Let us start by defining the following events: 

G1: the first (that is, the oldest) child is a girl. 
G2: the second child is a girl. 
G: the child seen with the mother is a girl. 

Also, let B1,B2, and B denote similar events, except that "girl" is replaced by "boy." 
Now, the desired probability is P(G1 G2iG), which can be expressed as follows: 

P(G G IG) = P(G1 G2G) 
1 2 P(G) 

P(G1G2) 
= 

P(G) 



Also, 
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P(G) = P(GIG1G2)P(G1G2) + P(GIG1B2)P(G1B2) 

+ P(GIB1 G2)P(B1 G2) + P(GIB1B2)P(B1B2) 

= P(G1G2) + P(GIG1B2)P(G1B2) + P(GIB1G2)P(B1G2) 

where the final equation used the results P(GIG1 G2) = 1 and P(GIB1B2) = 0. If we 
now make the usual assumption that all 4 gender possibilities are equally likely, then 
we see that 

1 

P(G1 G2IG) = 4 
! + P(GIG1B2)/4 + P(GIB1 G2)/4 

1 

Thus, the answer depends on whatever assumptions we want to make about the con
ditional probabilities that the child seen with the mother is a girl given the event 
G1B2 and that the child seen with the mother is a girl given the event G2B1. For 
instance, if we want to assume, on the one hand, that, independently of the gen
ders of the children, the child walking with the mother is the elder child with some 
probability p, then it would follow that 

implying under this scenario that 

1 
P(G1G2IG) = 2 

If, on the other hand, we were to assume that if the children are of different genders, 
then the mother would choose to walk with the girl with probability q, independently 
of the birth order of the children, then we would have 

implying that 
1 

P(G1 G2IG) = l + Zq 

For instance, if we took q = 1, meaning that the mother would always choose to walk 
with a daughter, then the conditional probability that she has two daughters would 
be j, which is in accord with Example 2b because seeing the mother with a daughter 
is now equivalent to the event that she has at least one daughter. 

Hence, as stated, the problem is incapable of solution. Indeed, even when the 
usual assumption about equally likely gender probabilities is made, we still need to 
make additional assumptions before a solution can be given. This is because the sam
ple space of the experiment consists of vectors of the form s1,s2, i, where s1 is the 
gender of the older child, s2 is the gender of the younger child, and i identifies the 
birth order of the child seen with the mother. As a result, to specify the probabilities 
of the events of the sample space, it is not enough to make assumptions only about 
the genders of the children; it is also necessary to assume something about the con
ditional probabilities as to which child is with the mother given the genders of the 
children. • 
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A bin contains 3 types of disposable flashlights. The probability that a type 1 flash
light will give more than 100 hours of use is .7, with the corresponding probabilities 
for type 2 and type 3 flashlights being .4 and .3, respectively. Suppose that 20 per
cent of the flashlights in the bin are type 1, 30 percent are type 2, and 50 percent are 
type 3. 

(a) What is the probability that a randomly chosen flashlight will give more than 
100 hours of use? 

(b) Given that a flashlight lasted more than 100 hours, what is the conditional prob
ability that it was a type j flashlight, j = 1, 2, 3? 

Solution (a) Let A denote the event that the flashlight chosen will give more than 
100 hours of use, and let F; be the event that a type j flashlight is chosen, j = 1, 2, 3. 
To compute P(A), we condition on the type of the flashlight, to obtain 

P(A) = P(AIF1)P(F1) + P(AiF2)P(F2) + P(AiF3)P(F3) 

= (.7)(.2) + (.4)(.3) + (.3)(.5) = .41 

There is a 41 percent chance that the flashlight will last for more than 100 hours. 
(b) The probability is obtained by using Bayes's formula: 

Thus, 

P(P.IA) = P(AF;) 
1 P(A) 

P(AiF;)P(F;) 
= 

.41 

P(F1IA) = (.7)(.2)/.41=14/41 

P(F2IA) = (.4)(.3)/.41 = 12/41 

P(F3IA) = (.3)(.5)/.41 = 15/41 

For instance, whereas the initial probability that a type 1 flashlight is chosen is only 
.2, the information that the flashlight has lasted more than 100 hours raises the prob
ability of this event to 14/41 ~ .341. • 

A crime has been committed by a solitary individual, who left some DNA at the 
scene of the crime. Forensic scientists who studied the recovered DNA noted that 
only five strands could be identified and that each innocent person, independently, 
would have a probability of 10-5 of having his or her DNA match on all five strands. 
The district attorney supposes that the perpetrator of the crime could be any of the 
1 million residents of the town. Ten thousand of these residents have been released 
from prison within the past 10 years; consequently, a sample of their DNA is on file. 
Before any checking of the DNA file, the district attorney thinks that each of the 
10,000 ex-criminals has probability a of being guilty of the new crime, whereas each 
of the remaining 990,000 residents has probability {3, where a = c{3. (That is, the 
district attorney supposes that each recently released convict is c times as likely to 
be the crime's perpetrator as is each town member who is not a recently released 
convict.) When the DNA that is analyzed is compared against the database of the 
10,000 ex-convicts, it turns out that A. J. Jones is the only one whose DNA matches 
the profile. Assuming that the district attorney's estimate of the relationship between 
a and f3 is accurate, what is the probability that A. J. is guilty? 
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Solution To begin, note that because probabilities must sum to 1, we have 

1 = 10,000a + 990,000tJ = (10,000c + 990,000)tJ 

Thus, 

1 
tJ = 10,000c + 990,000' 

c 
a=-------

10,000c + 990,000 

Now, let G be the event that A. J. is guilty, and let M denote the event that A. J. is 
the only one of the 10,000 on file to have a match. Then, 

P(GIM) = P(GM) 
P(M) 

On the one hand, if A. J. is guilty, then he will be the only one to have a DNA match 
if none of the others on file have a match. Therefore, 

P(MIG) = (1 - 10-5)9999 

On the other hand, if A. J. is innocent, then in order for him to be the only match, his 
DNA must match (which will occur with probability 10-5), all others in the database 
must be innocent, and none of these others can have a match. Now, given that A. J. 
is innocent, the conditional probability that all the others in the database are also 
innocent is 

P( 11 h . Al. P(all in database innocent) 
a ot ers mnocentJ mnocent) = Al . 

P( mnocent) 
1 - 10,000a 

=-----
1 - a 

Also, the conditional probability, given their innocence, that none of the others in 
the database will have a match is (1 - 10-5)9999. Therefore, 

P(M!Gc) = 10-5 (1 - 10,000a) (1 - 10-5)9999 
1 - a 

Because P(G) =a, the preceding formula gives 

1 
P(GJM)- a = 

- a + 10-5(1 - 10,000a) --1-0--,-5 
.9 +Cl 

Thus, if the district attorney's initial thoughts were that an arbitrary ex-convict was 
100 times more likely to have committed the crime than was a nonconvict (that is, 
c = 100), then a = 19100 and 

1 
P(GJM) = l.099 :::::: 0.9099 

If the district attorney initially thought that the appropriate ratio was c = 10, then 
1 

a = 109 000 and 
' 

1 
P(GIM) = 1.99 :::::: 0.5025 
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If the district attorney initially thought that the criminal was equally likely to be any 
of the members of the town (c = 1), then a = 10-6 and 

1 
P(GIM) = 10_9 ~ 0.0917 

Thus, the probability ranges from approximately 9 percent when the district attor
ney's initial assumption is that all the members of the population have the same 
chance of being the perpetrator to approximately 91 percent when she assumes 
that each ex-convict is 100 times more likely to be the criminal than is a specified 
townsperson who is not an ex-convict. • 

4 Independent Events 

Example 
4a 

Example 
4b 

Example 
4c 

The previous examples in this chapter show that P(EIF), the conditional probability 
of E given F, is not generally equal to P(E), the unconditional probability of E. 
In other words, knowing that F has occurred generally changes the chances of E's 
occurrence. In the special cases where P(EIF) does in fact equal P(E), we say that E 
is independent of F. That is, E is independent of F if knowledge that F has occurred 
does not change the probability that E occurs. 

Since P(EIF) = P(EF) / P(F), it follows that E is independent of F if 

P(EF) = P(E)P(F) (4.1) 

The fact that Equation ( 4.1) is symmetric in E and F shows that whenever E is inde
pendent of F, Fis also independent of E. We thus have the following definition. 

Definition 
1\vo events E and Fare said to be independent if Equation ( 4.1) holds. 
1\vo events E and F that are not independent are said to be dependent. 

A card is selected at random from an ordinary deck of 52 playing cards. If E is the 
event that the selected card is an ace and F is the event that it is a spade, then E 
and F are independent. This follows because P(EF) = .Jz, whereas P(E) = ~ and 

P(F) = H· • 

Two coins are flipped, and all 4 outcomes are assumed to be equally likely. If E is 
the event that the first coin lands on heads and F the event that the second lands 
on tails, then E and Fare independent, since P(EF) = P({(H, T)}) = !, whereas 
P(E) = P({(H,H), (H, T)}) = ! and P(F) = P({(H, T), (T, T)}) = !· • 

Suppose that we toss 2 fair dice. Let E1 denote the event that the sum of the dice is 
6 and F denote the event that the first die equals 4. Then 

1 
P(E1F) = P({(4, 2)}) = 36 

whereas 

P(E1)P(F) = (2-) (!) = _2__ 
36 6 216 
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Hence, £ 1 and F are not independent. Intuitively, the reason for this is clear because 
if we are interested in the possibility of throwing a 6 (with 2 dice), we shall be quite 
happy if the first die lands on 4 (or, indeed, on any of the numbers 1, 2, 3, 4, and 5), 
for then we shall still have a possibility of getting a total of 6. If, however, the first 
die landed on 6, we would be unhappy because we would no longer have a chance 
of getting a total of 6. In other words, our chance of getting a total of 6 depends on 
the outcome of the first die; thus, E1 and F cannot be independent. 

Now, suppose that we let E2 be the event that the sum of the dice equals 7. Is E2 
independent of F? The answer is yes, since 

whereas 

1 
P(E2F) = P( { ( 4, 3)}) = 36 

P(E2)P(F) = (~) (~) = ;6 

We leave it for the reader to present the intuitive argument why the event that 
the sum of the dice equals 7 is independent of the outcome on the first die. • 

If we let E denote the event that the next president is a Republican and F the event 
that there will be a major earthquake within the next year, then most people would 
probably be willing to assume that E and Fare independent. However, there would 
probably be some controversy over whether it is reasonable to assume that E is 
independent of G, where G is the event that there will be a recession within two 
years after the election. • 

We now show that if Eis independent of F, then E is also independent of pc. 

If E and F are independent, then so are E and pc. 

Proof Assume that E and Fare independent. Since E = EF U EFc and EF and EFc 
are obviously mutually exclusive, we have 

or, equivalently, 

and the result is proved. 

P(E) = P(EF) + P(EP:) 

= P(E)P(F) + P(EP:) 

P(EP:) = P(E)[l - P(F)] 

= P(E)P(P:) 

D 

Thus, if Eis independent of F, then the probability of E's occurrence is unchanged 
by information as to whether or not F has occurred. 

Suppose now that Eis independent of F and is also independent of G. Is E 
then necessarily independent of FG? The answer, somewhat surprisingly, is no, as 
the following example demonstrates. 

Two fair dice are thrown. Let E denote the event that the sum of the dice is 7. Let F 
denote the event that the first die equals 4 and G denote the event that the second 
die equals 3. From Example 4c, we know that E is independent of F, and the same 
reasoning as applied there shows that E is also independent of G; but clearly, E is 
not independent of FG [since P(EIFG) = 1]. • 
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It would appear to follow from Example 4e that an appropriate definition of the 
independence of three events E, F, and G would have to go further than merely 

assuming that all of the ( ; ) pairs of events are independent. We are thus led to 

the following definition. 

Definition 
Three events E, F, and G are said to be independent if 

P(EFG) = P(E)P(F)P(G) 

P(EF) = P(E)P(F) 

P(EG) = P(E)P(G) 

P(FG) = P(F)P(G) 

Note that if E, F, and G are independent, then E will be independent of any 
event formed from F and G. For instance, Eis independent of Fu G, since 

P[E(F u G)] = P(EF u EG) 

= P(EF) + P(EG) - P(EFG) 

= P(E)P(F) + P(E)P(G) - P(E)P(FG) 

= P(E)[P(F) + P(G) - P(FG)] 

= P(E)P(F u G) 

Of course, we may also extend the definition of independence to more than 
three events. The events E1, E2, ... , En are said to be independent if for every subset 
Ei', E2', ... , E,,, r :5 n of these events, 

P(E11 E21 · · · E,,) = P(E11 )P(E21) · · · P(Er) 

Finally, we define an infinite set of events to be independent if every finite subset of 
those events is independent. 

Sometimes, a probability experiment under consideration consists of performing 
a sequence of subexperiments. For instance, if the experiment consists of continually 
tossing a coin, we may think of each toss as being a subexperiment. In many cases, 
it is reasonable to assume that the outcomes of any group of the subexperiments 
have no effect on the probabilities of the outcomes of the other subexperiments. If 
such is the case, we say that the subexperiments are independent. More formally, 
we say that the subexperiments are independent if E1, E2, . .. , En, . .. is necessarily 
an independent sequence of events whenever Ei is an event whose occurrence is 
completely determined by the outcome of the ith subexperiment. 

If each subexperiment has the same set of possible outcomes, then the subex
periments are often called trials. 

An infinite sequence of independent trials is to be performed. Each trial results in a 
success with probability p and a failure with probability 1 - p. What is the proba
bility that 

(a) at least 1 success occurs in the first n trials; 
(b) exactly k successes occur in the first n trials; 
(c) all trials result in successes? 
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Solution In order to determine the probability of at least 1 success in the first n 
trials, it is easiest to compute first the probability of the complementary event: that 
of no successes in the first n trials. If we let Ei denote the event of a failure on the ith 
trial, then the probability of no successes is, by independence, 

Hence, the answer to part (a) is 1 - (1 - p)n. 
To compute the answer to part (b ), consider any particular sequence of the first 

n outcomes containing k successes and n - k failures. Each one of these sequences 
will, by the assumed independence of trials, occur with probability pk(l - p)n-k. 

Since there are ( ~) such sequences [there are n!/k!(n - k)! permutations of k 

successes and n - k failures], the desired probability in part (b) is 

P{exactly k successes} = ( Z) pk(l - p)n-k 

To answer part (c), we note that, by part (a), the probability of the first n trials 
all resulting in success is given by 

Thus, using the continuity property of probabilities, we see that the desired proba
bility is given by 

• 

A system composed of n separate components is said to be a parallel system if it 
functions when at least one of the components functions. (See Figure 2.) For such 
a system, if component i, which is independent of the other components, functions 
with probability Pi, i = 1, ... , n, what is the probability that the system functions? 

Solution Let Ai denote the event that component i functions. Then, 

P{system functions} = 1 - P{system does not function} 

= 1 - P{all components do not function} 

~ 1~P(0Af) 
n 

= 1 - n (1 - Pi) by independence 
i=l 

• 
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1 

2 
i-----B 

3 

n 

Figure 2 Parallel System: Functions if Current Flows from A to B. 

Independent trials consisting of rolling a pair of fair dice are performed. What is the 
probability that an outcome of 5 appears before an outcome of 7 when the outcome 
of a roll is the sum of the dice? 

Solution If we let En denote the event that no 5 or 7 appears on the first n - 1 trials 
and a 5 appears on the nth trial, then the desired probability is 

Now, since P{S on any trial} = ~ and P{7 on any trial} = ~. we obtain, by the 
independence of trials, 

( lO)n-l 4 
P(En) = 1 - 36 36 

Thus, 

p(QE·) ~~EG~t 
1 1 

=----
91 - li 
2 

=-
5 

This result could also have been obtained by the use of conditional probabilities. 
If we let E be the event that a 5 occurs before a 7, then we can obtain the desired 
probability, P(E), by conditioning on the outcome of the first trial, as follows: Let 
F be the event that the first trial results in a 5, let G be the event that it results in 
a 7, and let H be the event that the first trial results in neither a 5 nor a 7. Then, 
conditioning on which one of these events occurs gives 

However, 

P(E) = P(EIF)P(F) + P(EIG)P(G) + P(EIH)P(H) 

P(EIF) = 1 

P(EIG) = O 

P(EIH) = P(E) 

The first two equalities are obvious. The third follows because if the first outcome 
results in neither a 5 nor a 7, then at that point the situation is exactly as it was when 
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the problem first started-namely, the experimenter will continually roll a pair of fair 
dice until either a 5 or 7 appears. Furthermore, the trials are independent; therefore, 
the outcome of the first trial will have no effect on subsequent rolls of the dice. Since 
P(F) = J\,P(G) =~.and P(H) =~.it follows that 

or 

1 13 
P(E) = 9 + P(E) 18 

2 
P(E) = -

5 

The reader should note that the answer is quite intuitive. That is, because a 5 
occurs on any roll with probability ~ and a 7 with probability ~, it seems intuitive 
that the odds that a 5 appears before a 7 should be 6 to 4 against. The probability 
should then be -& , as indeed it is. 

The same argument shows that if E and F are mutually exclusive events of an 
experiment, then, when independent trials of the experiment are performed, the 
event E will occur before the event F with probability 

P(E) • P(E) + P(F) 

Suppose there are n types of coupons and that each new coupon collected is, inde
pendent of previous selections, a type i coupon with probability Pi, L:i!:1 Pi = 1. 
Suppose k coupons are to be collected. If Ai is the event that there is at least one 
type i coupon among those collected, then, for i "# j, find 

(a) P(Ai) 

(b) P(Ai U Aj) 

(c) P(A;IAj) 

Solution 

P(Ai) = 1 - P(Af) 

= 1 - P{no coupon is type i} 

= 1 - (1 - Pi)k 

where the preceding used that each coupon is, independently, not of type i with prob
ability 1 - Pi· Similarly, 

P(A; U Aj) = 1 - P((A; U Ajt) 

= 1 - P{no coupon is either type i or type j} 

= 1 - (1 - Pi - Pj)k 

where the preceding used that each coupon is, independently, neither of type i nor 
type j with probability 1 - Pi - Pj· 

To determine P(AilAj). we will use the identity 

P(Ai U Aj) = P(Ai) + P(Aj) - P(AiAj) 

which, in conjunction with parts (a) and (b), yields 

P(AiAj) = 1 - (1 - Pi)k + 1 - (1 - Pj)k - [1 - (1 - Pi - Pj)k] 

= 1 - (1 - Pi)k - (1 - Pj)k + (1 - Pi - Pjl 
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Consequently, 

P(AiAj) 1 (1 - Pi)k - (1 - Pj)k + (1 - Pi - P;)k 
P(AilA;) = P(A;) = ------l---(-l--"'---P1--)k,.------ • 

The next example presents a problem that occupies an honored place in the his
tory of probability theory. This is the famous problem of the points. In general terms, 
the problem is this: 1\vo players put up stakes and play some game, with the stakes 
to go to the winner of the game. An interruption requires them to stop before either 
has won and when each has some sort of a "partial score." How should the stakes be 
divided? 

This problem was posed to the French mathematician Blaise Pascal in 1654 by 
the Chevalier de Mere, who was a professional gambler at that time. In attacking 
the problem, Pascal introduced the important idea that the proportion of the prize 
deserved by the competitors should depend on their respective probabilities of win
ning if the game were to be continued at that point. Pascal worked out some special 
cases and, more importantly, initiated a correspondence with the famous French
man Pierre de Fermat, who had a reputation as a great mathematician. The resulting 
exchange of letters not only led to a complete solution to the problem of the points, 
but also laid the framework for the solution to many other problems connected with 
games of chance. This celebrated correspondence, considered by some as the birth 
date of probability theory, was also important in stimulating interest in probability 
among the mathematicians in Europe, for Pascal and Fermat were both recognized 
as being among the foremost mathematicians of the time. For instance, within a short 
time of their correspondence, the young Dutch mathematician Christiaan Huygens 
came to Paris to discuss these problems and solutions, and interest and activity in 
this new field grew rapidly. 

The problem of the points 

Independent trials resulting in a success with probability p and a failure with proba
bility 1 - p are performed. What is the probability that n successes occur before m 
failures? If we think of A and B as playing a game such that A gains 1 point when a 
success occurs and B gains 1 point when a failure occurs, then the desired probability 
is the probability that A would win if the game were to be continued in a position 
where A needed n and B needed m more points to win. 

Solution We shall present two solutions. The first comes from Pascal and the second 
from Fermat. 

Let us denote by P n,m the probability that n successes occur before m failures. 
By conditioning on the outcome of the first trial, we obtain 

Pn,m = pPn-1,m + (1 - p)Pn,m-1 n;::;::: 1,m;::;::: 1 

(Why? Reason it out.) Using the obvious boundary conditions Pn,o = O,Po,m = 1, 
we can solve these equations for Pn,m· Rather than go through the tedious details, 
let us instead consider Fermat's solution. 

Fermat argued that in order for n successes to occur before m failures, it is nec
essary and sufficient that there be at least n successes in the first m + n - 1 trials. 
(Even if the game were to end before a total of m + n - 1 trials were completed, we 
could still imagine that the necessary additional trials were performed.) This is true, 
for if there are at least n successes in the first m + n - 1 trials, there could be at 
most m - 1 failures in those m + n - 1 trials; thus, n successes would occur before 
m failures. If, however, there were fewer than n successes in the first m + n - 1 
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trials, there would have to be at least m failures in that same number of trials; thus, 
n successes would not occur before m failures. 

Hence, since, as shown in Example 4f, the probability of exactly k successes in 

m + n - 1 trials is ( m + t - 1 }pk(l - p)m+n-l-k, it follows that the desired 

probability of n successes before m failures is 

m+n-l ( ) 
Pn,m = L m +; - 1 pk(l - pr+n-l-k 

k=n 
• 

The following example gives another instance where determining the probabil
ity that a player wins a match is made easier by assuming that the play continues 
even after the match winner has been determined. 

Service protocol in a serve and rally game 

Consider a serve and rally match (such as volleyball, badminton, or squash) between 
two players, A and B. The match consists of a sequence of rallies, with each rally 
beginning with a serve by one of the players and continuing until one of the players 
has won the rally. The winner of the rally receives a point, and the match ends when 
one of the players has won a total of n points, with that player being declared the 
winner of the match. Suppose whenever a rally begins with A as the server, that A 
wins that rally with probability PA and that B wins it with probability qA = 1 - PA, 
and that a rally that begins with B as the server is won by A with probability p B and 
by B with probability qs = 1 - PB· Player A is to be the initial server. There are two 
possible server protocols that are under consideration: "winner serves," which means 
that the winner of a rally is the server for the next rally, or "alternating serve," which 
means that the server alternates from rally to rally, so that no two consecutive rallies 
have the same server. Thus, for instance, if n = 3, then the successive servers under 
the "winner serves" protocol would be A, B,A,A if A wins the first point, then B the 
next, then A wins the next two. On the other hand, the sequence of servers under the 
"alternating serve" protocol will always be A,B,A, B,A, ... until the match winner is 
decided. If you were player A, which protocol would you prefer? 

Solution Surprisingly, it turns out that it makes no difference, in that the probability 
that A is the match winner is the same under either protocol. To show that this is 
the case, it is advantageous to suppose that the players continue to play until a total 
of 2n - 1 rallies have been completed. The first player to win n rallies would then 
be the one who has won at least n of the 2n - 1 rallies. To begin, note that if the 
alternating serve protocol is being used, then player A will serve exactly n times and 
player B will serve exactly n - 1 times in the 2n - 1 rallies. 

Now consider the winner serve protocol, again assuming that the players con
tinue to play until 2n - 1 rallies have been completed. Because it makes no differ
ence who serves the "extra rallies" after the match winner has been decided, suppose 
that at the point at which the match has been decided (because one of the players 
has won n points), the remainder (if there are any) of the 2n - 1 rallies are all served 
by the player who lost the match. Note that this modified service protocol does not 
change the fact that the winner of the match will still be the player who wins at least 
n of the 2n - 1 rallies. We claim that under this modified service protocol, A will 
always serve n times and B will always serve n - 1 times. Two cases show this. 

Case 1: A wins the match. 
Because A serves first, it follows that A's second serve will immediately follow A's 
first point; A's third serve will immediately follow A's second point; and, in particular, 
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A's nth serve will immediately follow A's (n - 1) point. But this will be the last serve 
of A before the match result is decided. This is so because either A will win the point 
on that serve and so have n points, or A will lose the point and so the serve will 
switch to, and remain with, B until A wins point number n. Thus, provided that A 
wins the match, it follows that A would have served a total of n times at the moment 
the match is decided. Because, by the modified service protocol, A will never again 
serve, it follows in this case that A serves exactly n times. 

Case 2: B wins the match. 
Because A serves first, B's first serve will come immediately after B's first point; B's 
second serve will come immediately after B's second point; and, in particular, B's 
(n - 1) serve will come immediately after B's (n - 1) point. But that will be the last 
serve of B before the match is decided because either B will win the point on that 
serve and so have n points, or B will lose the point and so the serve will switch to, and 
remain with, A until B wins point number n. Thus, provided that B wins the match, 
we see that B would have served a total of n - 1 times at the moment the match 
is decided. Because, by the modified service protocol, B will never again serve, it 
follows in this case that B serves exactly n - 1 times, and, as there are a total of 
2n - 1 rallies, that A serves exactly n times. 

Thus, we see that under either protocol, A will always serve n times and B will 
serve n - 1 times and the winner of the match will be the one who wins at least 
n points. But since A wins each rally that he serves with probability PA and wins 
each rally that B serves with probability PB it follows that the probability that A is 
the match winner is, under either protocol, equal to the probability that there are at 
least n successes in 2n - 1 independent trials, when n of these trials result in a success 
with probability PA and the other n - 1 trials result in a success with probability p B· 

Consequently, the win probabilities for both protocols are the same. • 

Our next two examples deal with gambling problems, with the first having a 
surprisingly elegant analysis.* 

Suppose that initially there are r players, with player i having n; units, ni > 0, i = 
1, ... , r. At each stage, two of the players are chosen to play a game, with the winner 
of the game receiving 1 unit from the loser. Any player whose fortune drops to 0 is 
eliminated, and this continues until a single player has all n = Lt=l ni units, with 
that player designated as the victor. Assuming that the results of successive games 
are independent and that each game is equally likely to be won by either of its two 
players, find Pi, the probability that player i is the victor. 

Solution To begin, suppose that there are n players, with each player initially having 
1 unit. Consider player i. Each stage she plays will be equally likely to result in her 
either winning or losing 1 unit, with the results from each stage being independent. 
In addition, she will continue to play stages until her fortune becomes either 0 or 
n. Because this is the same for all n players, it follows that each player has the same 
chance of being the victor, implying that each player has probability 1/n of being the 
victor. Now, suppose these n players are divided into r teams, with team i containing 
ni players, i = 1, ... , r. Then, the probability that the victor is a member of team i is 
nif n. But because 

(a) team i initially has a total fortune of ni units, i = 1, ... , r, and 
(b) each game played by members of different teams is equally likely to be won 

by either player and results in the fortune of members of the winning team 
increasing by 1 and the fortune of the members of the losing team decreasing 
by J, 

*The remainder of this section should be considered optional. 
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it is easy to see that the probability that the victor is from team i is exactly the prob
ability we desire. Thus, Pi = nif n. Interestingly, our argument shows that this result 
does not depend on how the players in each stage are chosen. • 

In the gamblers ruin problem, there are only 2 gamblers, but they are not assumed 
to be of equal skill. 

The gambler's ruin problem 

1\vo gamblers, A and B, bet on the outcomes of successive flips of a coin. On each 
flip, if the coin comes up heads, A collects 1 unit from B, whereas if it comes up tails, 
A pays 1 unit to B. They continue to do this until one of them runs out of money. 
If it is assumed that the successive flips of the coin are independent and each flip 
results in a head with probability p, what is the probability that A ends up with all 
the money if he starts with i units and B starts with N - i units? 

Solution Let E denote the event that A ends up with all the money when he starts 
with i and B starts with N - i, and to make clear the dependence on the initial 
fortune of A, let Pi = P(E). We shall obtain an expression for P(E) by conditioning 
on the outcome of the first flip as follows: Let H denote the event that the first flip 
lands on heads; then 

P; = P(E) = P(EIH)P(H) + P(E!Hc)P(Hc) 

= pP(EIH) + (1 - p)P(E!Hc) 

Now, given that the first flip lands on heads, the situation after the first bet is that 
A has i + 1 units and B has N - (i + 1). Since the successive flips are assumed to be 
independent with a common probability p of heads, it follows that from that point 
on, A's probability of winning all the money is exactly the same as if the game were 
just starting with A having an initial fortune of i + 1 and B having an initial fortune 
of N - (i + 1). Therefore, 

P(EIH) = Pi+1 

and similarly, 

Hence, letting q = 1 - p, we obtain 

Pi = pPi+1 + qP;-1 i = 1, 2, ... , N - 1 (4.2) 

By making use of the obvious boundary conditions Po = 0 and PN = 1, we shall 
now solve Equation (4.2). Since p + q = 1, these equations are equivalent to 

pPi + qP; = pPi+1 + qPi-1 

or 

i = 1,2, ... ,N - 1 (4.3) 

89 



90 

Conditional Probability and Independence 

Hence, since Po = 0, we obtain, from Equation ( 4.3), 

Adding the first i - 1 equations of ( 4.4) yields 

or 

{ 

1 - (q/p)i p 

Pi= 1-(q/p) 1 

iP1 

Using the fact that PN = 1, we obtain 

Hence, 

{ 

1 - (q/p) 

1 - (q/p)N 
P1= 

1 
N 

{ 

1 - (q/p)i 

P; = ~ - (q/p)N 

if q_ =ft. 1 
p 

if q_ = 1 
p 

ifp =ft. i 

"f 1 1 P=2 

ifp =ft. i 

ifp = i 

(4.4) 

(4.5) 

Let Qi denote the probability that B winds up with all the money when A starts 
with i and B starts with N - i. Then, by symmetry to the situation described, and on 
replacingp by q and i by N - i, it follows that 

{ 

1 _ (p/q)N-i 

Qi= 1 - (p/q)N 
N - i 

N. 

if q =ft. i 

"f 1 1 q = 2 
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Moreover, since q = i is equivalent top= i, we have, when q =F- i, 

=1 

This result also holds when p = q = i, so 

pi+ Qi= 1 

In words, this equation states that with probability 1, either A or B will wind 
up with all of the money; in other words, the probability that the game continues 
indefinitely with A's fortune always being between 1 and N - 1 is zero. (The reader 
must be careful because, a priori, there are three possible outcomes of this gambling 
game, not two: Either A wins, or B wins, or the game goes on forever with nobody 
winning. We have just shown that this last event has probability 0.) 

As a numerical illustration of the preceding result, if A were to start with 5 units 
and B with 10, then the probability of A's winning would be ~ if p were i, whereas 
it would jump to 

ifp were .6. 

1 - (~)5 
(2)15 1 - 3 

><::: .87 

A special case of the gambler's ruin problem, which is also known as the prob
lem of duration of play, was proposed to Huygens by Fermat in 1657. The version 
Huygens proposed, which he himself solved, was that A and B have 12 coins each. 
They play for these coins in a game with 3 dice as follows: Whenever 11 is thrown (by 
either- it makes no difference who rolls the dice), A gives a coin to B. Whenever 14 
is thrown, B gives a coin to A. The person who first wins all the coins wins the game. 
Since P{roll 11} = ~and P{roll 14} = f&, we see from Example 4h that, for A, this 
is just the gambler's ruin problem with p = :H, i = 12, and N = 24. The general form 
of the gambler's ruin problem was solved by the mathematician James Bernoulli and 
published 8 years after his death in 1713. 

For an application of the gambler's ruin problem to drug testing, suppose that 
two new drugs have been developed for treating a certain disease. Drug i has a cure 
rate Pi, i = 1, 2, in the sense that each patient treated with drug i will be cured with 
probability Pi. These cure rates are, however, not known, and we are interested in 
finding a method for deciding whether P 1 > P2 or P2 > P1. To decide on one of 
these alternatives, consider the following test: Pairs of patients are to be treated 
sequentially, with one member of the pair receiving drug 1 and the other drug 2. 
The results for each pair are determined, and the testing stops when the cumulative 
number of cures from one of the drugs exceeds the cumulative number of cures from 
the other by some fixed, predetermined number. More formally, let 

Xj =I~ 
Yj =I~ 

if the patient in the jth pair that receives drug 1 is cured 
otherwise 

if the patient in the jth pair that receives drug 2 is cured 
otherwise 
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For a predetermined positive integer M, the test stops after pair N, where N is 
the first value of n such that either 

X1 + · · · + Xn - (Y1 + · · · + Yn) = M 

or 
X1 + · · · + Xn - (Y1 + · · · + Yn) = -M 

In the former case, we assert that P1 > P2 and in the latter that P2 > P1. 
In order to help ascertain whether the foregoing is a good test, one thing we 

would like to know is the probability that it leads to an incorrect decision. That 
is, for given P1 and P2, where P1 > P2, what is the probability that the test will 
incorrectly assert that P2 > Pi? To determine this probability, note that after each 
pair is checked, the cumulative difference of cures using drug 1 versus drug 2 will go 
up by 1 with probability P1 (1 - P2)-since this is the probability that drug 1 leads 
to a cure and drug 2 does not-or go down by 1 with probability (1 - P1)P2, or 
remain the same with probability P1P2 + (1 - P1)(l - Pz). Hence, if we consider 
only those pairs in which the cumulative difference changes, then the difference will 
go up by 1 with probability 

P = P{up llup 1 or down 1} 
P1(l - P2) = ~~~~~~~~~~ 

P1 (1 - P2) + (1 - P1)P2 

and down by 1 with probability 

l _ p = P2(l - P1) 

P1 (1 - P2) + (1 - P1)P2 

Thus, the probability that the test will assert that P2 > P1 is equal to the prob
ability that a gambler who wins each (one-unit) bet with probability P will go down 
M before going up M. But Equation (4.5), with i = M,N = 2M, shows that this 
probability is given by 

where 

P{test asserts that P2 > Pi} 

=1-

1 

1- (~)M 
1 - (1; prM 

-1 + yM 

P P1(l - P2) 

y = 1 - P = P2(l - P1) 

For instance, if P1 = .6 and P2 = .4, then the probability of an incorrect decision is 
.017 when M = 5 and reduces to .0003 when M = 10. • 

Suppose that we are presented with a set of elements and we want to determine 
whether at least one member of the set has a certain property. We can attack this 
question probabilistically by randomly choosing an element of the set in such a way 
that each element has a positive probability of being selected. Then the original 
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question can be answered by a consideration of the probability that the randomly 
selected element does not have the property of interest. If this probability is equal 
to 1, then none of the elements of the set has the property; if it is less than 1, then at 
least one element of the set has the property. 

The final example of this section illustrates this technique. 

The complete graph having n vertices is defined to be a set of n points (called ver

tices) in the plane and the ( ~ ) lines (called edges) connecting each pair 'of vertices. 

The complete graph having 3 vertices is shown in Figure 3. Suppose now that each 
edge in a complete graph having n vertices is to be colored either red or blue. For a 
fixed integer k, a question of interest is, Is there a way of coloring the edges so that 

no set of k vertices has all of its (; ) connecting edges the same color? It can be 

shown by a probabilistic argument that if n is not too large, then the answer is yes. 

Figure 3 

The argument runs as follows: Suppose that each edge is, independently, equally 
likely to be colored either red or blue. That is, each edge is red with probability ~· 

Number the ( ~) sets of k vertices and define the events Ei, i = 1, ... , ( ~) as 

follows: 

Ei = {all of the connecting edges of the ith set 
of k vertices are the same color} 

Now, since each of the (;) connecting edges of a set of k vertices is equally likely 

to be either red or blue, it follows that the probability that they are all the same 
color is 

Therefore, because 

(
l)k(k-1)/2 

P(Ei) = 2 -
2 

P ( y E;) o> I; P(E;) (Boole's inequality) 

we find that P ( y E), the probability that there is a set of k vertices all of whose 

connecting edges are similarly colored, satisfies 
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Hence, if 

( ~) (~) k(k-1)/2-1 < 1 

or, equivalently, if 

( ~) < 2k(k-1)/2-1 

then the probability that at least one of the ( ~) sets of k vertices has all of its 

connecting edges the same color is less than 1. Consequently, under the preceding 
condition on n and k, it follows that there is a positive probability that no set of k 
vertices has all of its connecting edges the same color. But this conclusion implies 
that there is at least one way of coloring the edges for which no set of k vertices has 
all of its connecting edges the same color. • 

Remarks (a) Whereas the preceding argument established a condition on n and k 
that guarantees the existence of a coloring scheme satisfying the desired property, it 
gives no information about how to obtain such a scheme (although one possibility 
would be simply to choose the colors at random, check to see if the resulting coloring 
satisfies the property, and repeat the procedure until it does). 

(b) The method of introducing probability into a problem whose statement is 
purely deterministic has been called the probabilistic method. t Other examples 
of this method are given in Theoretical Exercise 24. 

5 P( ·IF) Is a Probability 

Proposition 
S.I 

Conditional probabilities satisfy all of the properties of ordinary probabilities, as is 
proved by Proposition 5.1, which shows that P(EIF) satisfies the three axioms of a 
probability. 

(a) O ::;; P(EIF) :5 1. 
(b} P(SIF) = 1. 
( c) If E;, i = 1, 2, ... , are mutually exclusive events, then 

Proof To prove part (a}, we must show that 0 :5 P(EF)/P(F) :5 1. The left-side 
inequality is obvious, whereas the right side follows because EF c F, which implies 
that P(EF) :5 P(F). Part (b) follows because 

P(SIF) = P(SF) = P(F) = 1 
P(F) P(F) 

t See N. Alon, J. Spencer, and P. Erdos, The Probabil~tic Method (New York: John Wiley & Sons, Inc., 1992). 
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Part ( c) follows from 

P(F) 

P(F) 
00 

= LP(EilF) 
1 

since 

where the next-to-last equality follows because EiEj = 
EiFEjF = 0. 

0 implies that 
0 

Ifwe define Q(E) = P(EIF), then, from Proposition 5.1, Q(E) may be regarded 
as a probability function on the events of S. Hence, all of the propositions previously 
proved for probabilities apply to Q(E). For instance, we have 

or, equivalently, 

P(E1 U E2IF) = P(E1IF) + P(E21F) - P(E1E21F) 

Also, if we define the conditional probability Q(E1 IE2) by Q(E1 IE2) = Q(E1 E2) / 
Q(E2), then, from Equation (3.1), we have 

Since 

Q(E IE ) = Q(E1E2) 
1 2 Q(E2) 

Equation (5.1) is equivalent to 

= 
P(E1E2IF) 

P(E2IF) 
P(E1E2F) 

P(F) 
= P(E2F) 

P(F) 

= P(E1IE2F) 

(5.1) 

Consider Example 3a, which is concerned with an insurance company that believes 
that people can be divided into two distinct classes: those who are accident prone 
and those who are not. During any given year, an accident-prone person will have an 
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accident with probability .4, whereas the corresponding figure for a person who is not 
prone to accidents is .2. What is the conditional probability that a new policyholder 
will have an accident in his or her second year of policy ownership, given that the 
policyholder has had an accident in the first year? 

Solution If we let A be the event that the policyholder is accident prone and we let 
Ai, i = 1, 2, be the event that he or she has had an accident in the ith year, then the 
desired probability P(A2IA1) may be obtained by conditioning on whether or not 
the policyholder is accident prone, as follows: 

Now, 
p A A _ P(A1A) _ P(A1IA)P(A) 

( I i) - P(A1) - P(A1) 

However, P(A) is assumed to equal fo, and it was shown in Example 3a that P(A1) = 
.26. Hence, 

P(A A ) = (.4)(.3) = ~ 
I 1 .26 13 

Thus, 

P(AclA1) = 1 - P(AIA1) = ; 3 

Since P(A2IAA1) = .4 and P(A2IAcA1) = .2, it follows that 

6 7 
P(A2IA1) = (.4) l3 + (.2) l3 ::::> .29 • 

A female chimp has given birth. It is not certain, however, which of two male chimps 
is the father. Before any genetic analysis has been performed, it is believed that the 
probability that male number 1 is the father is p and the probability that male num
ber 2 is the father is 1 - p. DNA obtained from the mother, male number 1, and 
male number 2 indicates that on one specific location of the genome, the mother has 
the gene pair (A,A), male number 1 has the gene pair (a,a), and male number 2 
has the gene pair (A, a). If a DNA test shows that the baby chimp has the gene pair 
(A,a), what is the probability that male number 1 is the father? 

Solution Let all probabilities be conditional on the event that the mother has the 
gene pair (A,A), male number 1 has the gene pair (a,a), and male number 2 has 
the gene pair (A,a). Now, let Mi be the event that male number i, i = 1,2, is the 
father, and let BA,a be the event that the baby chimp has the gene pair (A,a). Then, 
P(M1 IB A,a) is obtained as follows: 

Because ffp > p when p < 1, the information that the baby's gene pair is (A, a) 
increases the probability that male number 1 is the father. This result is intuitive 
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because it is more likely that the baby would have gene pair (A, a) if M1 is true than 
if M2 is true (the respective conditional probabilities being 1 and 1/2). • 

The next example deals with a problem in the theory of runs. 

Independent trials, each resulting in a success with probability p or a failure with 
probability q = 1 - p, are performed. We are interested in computing the prob
ability that a run of n consecutive successes occurs before a run of m consecutive 
failures. 

Solution Let Ebe the event that a run of n consecutive successes occurs before a run 
of m consecutive failures. To obtain P(E), we start by conditioning on the outcome 
of the first trial. That is, letting H denote the event that the first trial results in a 
success, we obtain 

P(E) = pP(EiH) + qP(EIHc) (5.2) 

Now, given that the first trial was successful, one way we can get a run of n 
successes before a run of m failures would be to have the next n - 1 trials all result 
in successes. So, let us condition on whether or not that occurs. That is, letting F be 
the event that trials 2 through n all are successes, we obtain 

P(EIH) = P(EIFH)P(FIH) + P(EiFH)P(FiH) (5.3) 

On the one hand, clearly, P(EiFH) = 1; on the other hand, if the event pc H occurs, 
then the first trial would result in a success, but there would be a failure some time 
during the next n - 1 trials. However, when this failure occurs, it would wipe out 
all of the previous successes, and the situation would be exactly as if we started out 
with a failure. Hence, 

Because the independence of trials implies that F and H are independent, and 
because P(F) = pn-l, it follows from Equation (5.3) that 

(5.4) 

We now obtain an expression for P(EiHc) in a similar manner. That is, we let C 
denote the event that trials 2 through m are all failures. Then, 

Now, CHc is the event that the first m trials all result in failures, so P(EiCHc) = 0. 
Also, if cc He occurs, then the first trial is a failure, but there is at least one success 
in the next m - 1 trials. Hence, since this success wipes out all previous failures, we 
see that 

P(Ei cc He) = P(EiH) 

Thus, because P(CciHc) = P(Cc) = 1 - q"1-1, we obtain, from (5.5), 

P(EIHc) = (1 - q"'-1)P(EIH) 

Solving Equations (5.4) and (5.6) yields 

and 

pn-l 
P(EIH) = --1------pn- + qm-l _ pn-lqm-l 

(5.6) 
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Thus, 

P(E) = pP(EIH) + qP(EIHc) 

pn + qpn-1(1 _ qm-1) 
= pn-1 + qm-1 _ pn-lqm-1 

pn-1(1 _ qm) 
(5.7) 

It is interesting to note that by the symmetry of the problem, the probability 
of obtaining a run of m failures before a run of n successes would be given by 
Equation (5.7) with p and q interchanged and n and m interchanged. Hence, this 
probability would equal 

P{run of m failures before a run of n successes} 
qm-1(1 _ pn) 

(5.8) 

Since Equations (5.7) and (5.8) sum to 1, it follows that, with probability 1, either a 
run of n successes or a run of m failures will eventually occur. 

As an example of Equation (5.7), we note that, in tossing a fair coin, the proba
bility that a run of 2 heads will precede a run of 3 tails is lo. For 2 consecutive heads 
before 4 consecutive tails, the probability rises to ~· • 

In our next example, we return to a matching problem and obtain a solution by 
using conditional probabilities. 

At a party, n men take off their hats. The hats are then mixed up, and each man 
randomly selects one. We say that a match occurs if a man selects his own hat. What 
is the probability of 

(a) no matches? 
(b) exactly k matches? • 

Solution (a) Let E denote the event that no matches occur, and to make explicit the 
dependence on n, write P n = P(E). We start by conditioning on whether or not the 
first man selects his own hat-call these events Mand Mc, respectively. Then, 

Clearly, P(EIM) = 0, so 

(5.9) 

Now, P(EIMc) is the probability of no matches when n 1 men select from a set 
of n - 1 hats that does not contain the hat of one of these men. This can hap
pen in either of two mutually exclusive ways: Either there are no matches and the 
extra man does not select the extra hat (this being the hat of the man who chose 
first) or there are no matches and the extra man does select the extra hat. The 
probability of the first of these events is just Pn-1• which is seen by regarding the 
extra hat as "belonging" to the extra man. Because the second event has probability 
[1/(n - l)]Pn-2, we have 

1 
P(EIMc) = Pn-1 + --1Pn-2 

n -
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Thus, from Equation (5.9), 

or, equivalently, 

n - 1 1 
Pn = --Pn-1 + -Pn-2 

n n 

1 
Pn - Pn-1 = --(Pn-1 - Pn-2) 

n 
(5.10) 

However, since Pn is the probability of no matches when n men select among their 
own hats, we have 

1 
P2 = -

2 

So, from Equation (5.10), 

and, in general, 

(P2 - P1) 

3 
(P3 - P2) 

4 

1 
3! 

1 
4! 

or 
1 

P3=-
2! 

1 
or P4=-

2! 

1 
Pn = 2! 

1 1 (-l)n 
3! + 4! - · ·· + n! 

1 
3! 

1 1 
3! + 4! 

(b) To obtain the probability of exactly k matches, we consider any fixed group 
of k men. The probability that they, and only they, select their own hats is 

1 1 1 (n - k)! 
;;-n---1 ... n - (k - l)Pn-k = n! Pn-k 

where P n-k is the conditional probability that the other n - k men, selecting among 

their own hats, have no matches. Since there are ( ~ ) choices of a set of k men, the 

desired probability of exactly k matches is 

1 1 + + 
(-l)n-k 

Pn-k 21 3i 
... 

(n - k)! 
= • k! k! 

An important concept in probability theory is that of the conditional indepen
dence of events. We say that the events £ 1 and E2 are conditionally independent 
given F if given that F occurs, the conditional probability that £ 1 occurs is unchanged 
by information as to whether or not E2 occurs. More formally, E1 and E2 are said to 
be conditionally independent given F if 

(5.11) 

or, equivalently, 
(5.12) 

The notion of conditional independence can easily be extended to more than 
two events, and this extension is left as an exercise. 

The reader should note that the concept of conditional independence was implic
itly employed in Example Sa, where it was assumed that the events that a poli
cyholder had an accident in his or her ith year, i = 1, 2, ... , were conditionally 
independent given whether or not the person was accident prone. The following 
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example, sometimes referred to as Laplace's rule of succession, further illustrates 
the concept of conditional independence. 

Laplace's rule of succession 

There are k + 1 coins in a box. When flipped, the ith coin will turn up heads with 
probability if k, i = 0, 1, ... , k. A coin is randomly selected from the box and is then 
repeatedly flipped. If the first n flips all result in heads, what is the conditional prob
ability that the (n + 1) flip will do likewise? 

Solution Let Ci denote the event that the ith coin, i = 0, 1, ... , k, is initially selected; 
let Fn denote the event that the first n flips all result in heads; and let H be the event 
that the (n + 1) flip is a head. The desired probability, P(H\Fn), is now obtained as 
follows: 

k 

P(H\Fn) = LP(H\FnCi)P(Ci\Fn) 
i=O 

Now, given that the ith coin is selected, it is reasonable to assume that the out
comes will be conditionally independent, with each one resulting in a head with 
probability ilk. Hence, 

Also, 

P(CiFn) P(FnlCi)P(Ci) (i/k)n[l/(k + 1)] 
P(Ci\Fn) = P(Fn) = _k _____ = k 

L:P<FnlCj)P(Cj) L(jfk)n[l/(k + 1)] 
j=O j=O 

Thus, 

k 

L(i/k)n+l 

P(H\Fn) = _i=_O __ _ 
k 

L:v!k)n 
j=O 

But if k is large, we can use the integral approximations 

So, for k large, 

1 k ( i )n+l ~ fol +1 1 -I: - ~ xi dx=-
ki=O k O n+2 

1 k ( ·)n fol 1 - L L ~ X1dx = --
k. k o n+l 

1=0 

n + 1 
P(H\Fn) ~ -

n + 2 • 
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Updating information sequentially 

Suppose there are n mutually exclusive and exhaustive possible hypotheses, with 
initial (sometimes referred to as prior) probabilities P(Hi), Lt=l P(Hi) = 1. Now, if 
information that the event E has occurred is received, then the conditional probabil
ity that Hi is the true hypothesis (sometimes referred to as the updated or posterior 
probability of Hi) is 

(5.13) 

Suppose now that we learn first that E1 has occurred and then that E2 has occurred. 
Then, given only the first piece of information, the conditional probability that Hi is 
the true hypothesis is 

P(HilEi) = P(EilHi)P(Hi) = P(EilHi)P(Hi) 
P(E1) LjP(EilHj)P(Hj) 

whereas given both pieces of information, the conditional probability that Hi is the 
true hypothesis is P(HilE1E2), which can be computed by 

P(HilEiE2) = P(E1E2IHi)P(Hi) 
Lj P(E1E2IHj)P(Hj) 

One might wonder, however, when one can compute P(HilE1E2) by using the 
right side of Equation (5.13) with E = E2 and with P(Hj) replaced by P(HjlE1), 
j = 1, ... ,n. That is, when is it legitimate to regard P(HjlE1), j ~ 1, as the prior 
probabilities and then use (5.13) to compute the posterior probabilities? 

Solution The answer is that the preceding is legitimate, provided that for each j = 
1, ... , n, the events E1 and E2 are conditionally independent, given Hj. For if this is 
the case, then 

Therefore, 

Hr EE _ P(E2IHi)P(E1IHi)P(Hi) 
P( ii 1 z) - P(E1E2) 

P(E2IHi)P(E1Hi) 
= P(E1E2) 

P(E2IHi)P(HilE1)P(E1) 
=~~~~~~~~-

P(E1E2) 

P(E2IHi)P(HilE1) 
= Q(l,2) 

where Q(l, 2) = P~~t7f). Since the preceding equation is valid for all i, we obtain, 
upon summing, 

n n E 
l = ~ P(HIE E ) = ~ P(E2IHi)P(Hil 1) 
~ ' 1 2 ~ Q(l,2) 
t=l t=l 

showing that 
n 

Q(l, 2) = L P(E2IHi)P(HilE1) 
i=l 
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and yielding the result 

P(HilEiE2) = :(E2IHi)P(HilE1) 
Li=l P(E2IHi)P(H;IE1) 

For instance, suppose that one of two coins is chosen to be flipped. Let H; be the 
event that coin i, i = 1, 2, is chosen, and suppose that when coin i is flipped, it lands 
on heads with probability p;, i = 1, 2. Then, the preceding equations show that to 
sequentially update the probability that coin 1 is the one being flipped, given the 
results of the previous flips, all that must be saved after each new flip is the condi
tional probability that coin 1 is the coin being used. That is, it is not necessary to 
keep track of all earlier results. • 

Summary 

For events E and F, the conditional probability of E given 
that F has occurred is denoted by P(EIF) and is defined by 

The identity 

P(EIF) = P(EF) 
P(F) 

is known as the multiplication rule of probability. 
A valuable identity is 

P(E) = P(EIF)P(F) + P(ElfiC)P(JiC) 

which can be used to compute P(E) by "conditioning" on 
whether F occurs. 

P(H)/P(Hc) is called the odds of the event H. The 
identity 

shows that when new evidence E is obtained, the value of 
the odds of H becomes its old value multiplied by the ratio 
of the conditional probability of the new evidence when H 
is true to the conditional probability when His not true. 

Let Fi, i = 1, ... , n, be mutually exclusive events 
whose union is the entire sample space. The identity 

Problems 

P(FjlE) = nP(EIFj)P(Fj) 

L P(EIF;)P(Fi) 
i=l 

is known as Bayes's formula. If the events Fi, i = 1, ... ,n, 
are competing hypotheses, then Bayes's formula shows 
how to compute the conditional probabilities of these 
hypotheses when additional evidence E becomes avail
able. 

The denominator of Bayes's formula uses that 

n 

P(E) = L P(EIF;)P(F;) 
i=l 

which is called the law of total probability. 
If P(EF) = P(E)P(F), then we say that the events 

E and F are independent. This condition is equivalent to 
P(EIF) = P(E) and to P(FIE) = P(F). Thus, the events E 
and F are independent if knowledge of the occurrence of 
one of them does not affect the probability of the other. 

The events Ei. ... , En are said to be independent if, 
for any subset Eit, ... , E;, of them, 

P(Ei1 • • • E;,) = P(Ei1 ) • • • P(Ei,) 

For a fixed event F, P(EIF) can be considered to be a prob
ability function on the events E of the sample space. 

I. Two fair dice are rolled. What is the conditional proba- 3. Use Equation (2.1) to compute in a hand of bridge the 
bility that at least one lands on 6 given that the dice land conditional probability that East has 3 spades given that 
on different numbers? North and South have a combined total of 8 spades. 

2. If two fair dice are rolled, what is the conditional proba- 4, What is the probability that at least one of a pair of 
bility that the first one lands on 6 given that the sum of the fair dice lands on 6, given that the sum of the dice is i, 
dice is i? Compute for all values of i between 2 and 12. i = 2, 3, ... , 12? 
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5. An um contains 6 white and 9 black balls. If 4 balls are 
to be randomly selected without replacement, what is the 
probability that the first 2 selected are white and the last 2 
black? 

6. Consider an um containing 12 balls, of which 8 are 
white. A sample of size 4 is to be drawn with replacement 
(without replacement). What is the conditional probabil
ity (in each case) that the first and third balls drawn will be 
white given that the sample drawn contains exactly 3 white 
balls? 

7. The king comes from a family of 2 children. What is the 
probability that the other child is his sister? 

8. A couple has 2 children. What is the probability that 
both are girls if the older of the two is a girl? 

9. Consider 3 urns. Um A contains 2 white and 4 red balls, 
um B contains 8 white and 4 red balls, and um C contains 
1 white and 3 red balls. If 1 ball is selected from each urn, 
what is the probability that the ball chosen from um A was 
white given that exactly 2 white balls were selected? 

IO. Three cards are randomly selected, without replace
ment, from an ordinary deck of 52 playing cards. Compute 
the conditional probability that the first card selected is a 
spade given that the second and third cards are spades. 

11. 1\vo cards are randomly chosen without replacement 
from an ordinary deck of 52 cards. Let B be the event that 
both cards are aces, let As be the event that the ace of 
spades is chosen, and let A be the event that at least one 
ace is chosen. Find 

(a) P(BIAs) 
(b)P(BIA) 

12. A recent college graduate is planning to take the first 
three actuarial examinations in the coming summer. She 
will take the first actuarial exam in June. If she passes 
that exam, then she will take the second exam in July, and 
if she also passes that one, then she will take the third 
exam in September. If she fails an exam, then she is not 
allowed to take any others. The probability that she passes 
the first exam is .9. If she passes the first exam, then the 
conditional probability that she passes the second one is 
.8, and if she passes both the first and the second exams, 
then the conditional probability that she passes the third 
exam is .7. 

(a) What is the probability that she passes all three exams? 
(b) Given that she did not pass all three exams, what is the 
conditional probability that she failed the second exam? 

13. Suppose that an ordinary deck of 52 cards (which con
tains 4 aces) is randomly divided into 4 hands of 13 cards 
each. We are interested in determining p, the probability 
that each hand has an ace. Let E; be the event that the ith 
hand has exactly one ace. Determine p = P(E1E2E3E4) 
by using the multiplication rule. 

14. An um initially contains 5 white and 7 black balls. Each 
time a ball is selected, its color is noted and it is replaced 
in the um along with 2 other balls of the same color. Com
pute the probability that 

(a) the first 2 balls selected are black and the next 2 are 
white; 
(b) of the first 4 balls selected, exactly 2 are black. 

15. An ectopic pregnancy is twice as likely to develop 
when the pregnant woman is a smoker as it is when she is 
a nonsmoker. If 32 percent of women of childbearing age 
are smokers, what percentage of women having ectopic 
pregnancies are smokers? 

16. Ninety-eight percent of all babies survive delivery. 
However, 15 percent of all births involve Cesarean (C) 
sections, and when a C section is performed, the baby sur
vives 96 percent of the time. If a randomly chosen preg
nant woman does not have a C section, what is the proba
bility that her baby survives? 

17. In a certain community, 36 percent of the families own 
a dog and 22 percent of the families that own a dog also 
own a cat. In addition, 30 percent of the families own a 
cat. What is 

(a) the probability that a randomly selected family owns 
both a dog and a cat? 
(b) the conditional probability that a randomly selected 
family owns a dog given that it owns a cat? 

18. A total of 46 percent of the voters in a certain city clas
sify themselves as Independents, whereas 30 percent clas
sify themselves as Liberals and 24 percent say that they are 
Conservatives. In a recent local election, 35 percent of the 
Independents, 62 percent of the Liberals, and 58 percent 
of the Conservatives voted. A voter is chosen at random. 
Given that this person voted in the local election, what is 
the probability that he or she is 

(a) an Independent? 
(b) a Liberal? 
(c) a Conservative? 
( d) What percent of voters participated in the local 
election? 

19. A total of 48 percent of the women and 37 percent of 
the men who took a certain "quit smoking" class remained 
nonsmokers for at least one year after completing the 
class. These people then attended a success party at the 
end of a year. If 62 percent of the original class was male, 

(a) what percentage of those attending the party were 
women? 
(b) what percentage of the original class attended the 
party? 

20. Fifty-two percent of the students at a certain college 
are females. Five percent of the students in this college are 
majoring in computer science. 1\vo percent of the students 
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are women majoring in computer science. If a student is 
selected at random, find the conditional probability that 

(a) the student is female given that the student is majoring 
in computer science; 
(b) this student is majoring in computer science given that 
the student is female. 

21. A total of 500 married working couples were polled 
about their annual salaries, with the following information 
resulting: 

Wife 

Less than $25,000 
More than $25,000 

Husband 

Less than 
$25,000 

212 
36 

More than 
$25,000 

198 
54 

For instance, in 36 of the couples, the wife earned more 
and the husband earned less than $25,000. If one of the 
couples is randomly chosen, what is 

(a) the probability that the husband earns less than 
$25,000? 
(b) the conditional probability that the wife earns more 
than $25,000 given that the husband earns more than this 
amount? 
(c) the conditional probability that the wife earns more 
than $25,000 given that the husband earns less than this 
amount? 

(a) Suppose that you obtain information that the gold 
paint has been used (and thus at least one of the balls is 
painted gold). Compute the conditional probability that 
both balls are painted gold. 
(b) Suppose now that the um tips over and 1 ball falls out. 
It is painted gold. What is the probability that both balls 
are gold in this case? Explain. 

25. The following method was proposed to estimate the 
number of people over the age of 50 who reside in a 
town of known population 100,000: "As you walk along 
the streets, keep a running count of the percentage of peo
ple you encounter who are over 50. Do this for a few 
days; then multiply the percentage you obtain by 100,000 
to obtain the estimate." Comment on this method. 
Hint: Let p denote the proportion of people in the town 
who are over 50. Furthermore, let ai denote the propor
tion of time that a person under the age of 50 spends in 
the streets, and let a2 be the corresponding value for those 
over 50. What quantity does the method suggested esti
mate? When is the estimate approximately equal top? 

26. Suppose that 5 percent of men and 0.25 percent of 
women are color blind. A color-blind person is chosen 
at random. What is the probability of this person being 
male? Assume that there are an equal number of males 
and females. What if the population consisted of twice as 
many males as females? 

27. All the workers at a certain company drive to work and 
park in the company's lot. The company is interested in 
estimating the average number of workers in a car. Which 
of the following methods will enable the company to esti
mate this quantity? Explain your answer. 

22. A red die, a blue die, and a yellow die (all six sided) are 
rolled. We are interested in the probability that the num
ber appearing on the blue die is less than that appearing 
on the yellow die, which is less than that appearing on the 1. 
red die. That i-s, with B, Y, and R denoting, respectively, 

Randomly choose n workers, find out how many were 
in the cars in which they were driven, and take the aver
age of the n values. the number appearing on the blue, yellow, and red die, we 

are interested in P(B < Y < R). 2. Randomly choose n cars in the lot, find out how many 
were driven in those cars, and take the average of the n 
values. (a) What is the probability that no two of the dice land on 

the same number? 
(b) Given that no two of the dice land on the same num
ber, what is the conditional probability that B < Y < R? 
(c) What is P(B < Y < R)? 

23. Um I contains 2 white and 4 red balls, whereas urn II 
contains 1 white and 1 red ball. A ball is randomly chosen 
from um I and put into um II, and a ball is then randomly 
selected from urn II. What is 
(a) the probability that the ball selected from um II is 
white? 
(b) the conditional probability that the transferred ball 
was white given that a white ball is selected from um II? 

24. Each of 2 balls is painted either black or gold and then 

28. Suppose that an ordinary deck of 52 cards is shuffled 
and the cards are then turned over one at a time until the 
first ace appears. Given that the first ace is the 20th card 
to appear, what is the conditional probability that the card 
following it is the 
(a) ace of spades? 
(b) two of clubs? 

29. There are 15 tennis balls in a box, of which 9 have 
not previously been used. Three of the balls are randomly 
chosen, played with, and then returned to the box. Later, 
another 3 balls are randomly chosen froi;n the box. Find 
the probability that none of these balls has ever been 
used. 

placed in an um. Suppose that each ball is colored black 30. Consider two boxes, one containing 1 black and 1 
with probability ~ and that these events are independent. white marble, the other 2 black and 1 white marble. A 
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box is selected at random, and a marble is drawn from 
it at random. What is the probability that the marble is 
black? What is the probability that the first box was the 
one selected given that the marble is white? 

31. Ms. Aquina has just had a biopsy on a possibly cancer
ous tumor. Not wanting to spoil a weekend family event, 
she does not want to hear any bad news in the next few 
days. But if she tells the doctor to call only if the news 
is good, then if the doctor does not call, Ms. Aquina can 
conclude that the news is bad. So, being a student of prob
ability, Ms. Aquina instructs the doctor to flip a coin. If it 
comes up heads, the doctor is to call if the news is good and 
not call if the news is bad. If the coin comes up tails, the 
doctor is not to call. In this way, even if the doctor doesn't 
call, the news is not necessarily bad. Let a be the proba
bility that the tumor is cancerous; let {3 be the conditional 
probability that the tumor is cancerous given that the doc
tor does not call. 

(a) Which should be larger, a or {J? 
(b) Find {3 in terms of a, and prove your answer in part (a). 

32. A family has j children with probability Pj. where Pl = 
.1,p2 = .25,p3 = .35,p4 = .3. A child from this family is 
randomly chosen. Given that this child is the eldest child in 
the family, find the conditional probability that the family 
has 

(a) only 1 child; 
(b) 4 children. 

Redo (a) and (b) when the randomly selected child is the 
youngest child of the family. 

33. On rainy days, Joe is late to work with probability .3; 
on nonrainy days, he is late with probability .1. With prob
ability .7, it will rain tomorrow. 

(a) Find the probability that Joe is early tomorrow. 
(b) Given that Joe was early, what is the conditional prob
ability that it rained? 

34. In Example 3f, suppose that the new evidence is sub
ject to different possible interpretations and in fact shows 
only that it is 90 percent likely that the criminal pos
sesses the characteristic in question. In this case, how likely 
would it be that the suspect is guilty (assuming, as before, 
that he has the characteristic)? 

35. With probability .6, the present was hidden by mom; 
with probability .4, it was hidden by dad. When mom hides 
the present, she hides it upstairs 70 percent of the time and 
downstairs 30 percent of the time. Dad is equally likely to 
hide it upstairs or downstairs. 

(a) What is the probability that the present is upstairs? 
(b) Given that it is downstairs, what is the probability it 
was hidden by dad? 

36. Stores A, B, and C have 50, 75, and 100 employ
ees, respectively, and 50, 60, and 70 percent of them 

respectively are women. Resignations are equally likely 
among all employees, regardless of sex. One woman 
employee resigns. What is the probability that she works 
in store C? 

37. (a) A gambler has a fair coin and a two-headed coin in 
his pocket. He selects one of the coins at random; when he 
flips it, it shows heads. What is the probability that it is the 
fair coin? 
(b) Suppose that he flips the same coin a second time and, 
again, it shows heads. Now what is the probability that it is 
the fair coin? 
(c) Suppose that he flips the same coin a third time and it 
shows tails. Now what is the probability that it is the fair 
coin? 

38. Um A has 5 white and 7 black balls. Urn B has 3 white 
and 12 black balls. We flip a fair coin. If the outcome is 
heads, then a ball from um A is selected, whereas if the 
outcome is tails, then a ball from urn B is selected. Sup
pose that a white ball is selected. What is the probability 
that the coin landed tails? 

39. In Example 3a, what is the probability that someone 
has an accident in the second year given that he or she had 
no accidents in the first year? 

40. Consider a sample of size 3 drawn in the following 
manner: We start with an urn containing 5 white and 7 red 
balls. At each stage, a ball is drawn and its color is noted. 
The ball is then returned to the urn, along with an addi
tional ball of the same color. Find the probability that the 
sample will contain exactly 

(a) 0 white balls; 
(b) 1 white ball; 
(c) 3 white balls; 
(d) 2 white balls. 

41. A deck of cards is shuffled and then divided into two 
halves of 26 cards each. A card is drawn from one of the 
halves; it turns out to be an ace. The ace is then placed in 
the second half-deck. The half is then shuffled, and a card 
is drawn from it. Compute the probability that this drawn 
card is an ace. 

Hint: Condition on whether or not the interchanged card 
is selected. 

42. Twelve percent of all U.S. households are in California. 
A total of 1.3 percent of all U.S. households earn more 
than $250,000 per year, while a total of 3.3 percent of all 
California households earn more than $250,000 per year. 

(a) What proportion of all non-California households earn 
more than $250,000 per year? 
(b) Given that a randomly chosen U.S. household earns 
more than $250,000 per year, what is the probability it is 
a California household? 
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43. There are 3 coins in a box. One is a two-headed coin, 
another is a fair coin, and the third is a biased coin that 
comes up heads 7S percent of the time. When one of the 
3 coins is selected at random and flipped, it shows heads. 
What is the probability that it was the two-headed coin? 

44, Three prisoners are informed by their jailer that one 
of them has been chosen at random to be executed and 
the other two are to be freed. Prisoner A asks the jailer to 
tell him privately which of his fellow prisoners will be set 
free, claiming that there would be no harm in divulging 
this information because he already knows that at least 
one of the two will go free. The jailer refuses to answer the 
question, pointing out that if A knew which of his fellow 
prisoners were to be set free, then his own probability of 
being executed would rise from j to ~ because he would 
then be one of two prisoners. What do you think of the 
jailer's reasoning? 

45. Suppose we have 10 coins such that if the ith coin 
is flipped, heads will appear with probability i/10, i = 
1, 2, ... , 10. When one of the coins is randomly selected 
and flipped, it shows heads. What is the conditional prob
ability that it was the fifth coin? 

46. In any given year, a male automobile policyholder 
will make a claim with probability Pm and a female pol
icyholder will make a claim with probability Pt, where 
Pt * Pm· The fraction of the policyholders that are male 
is a, 0 < a < 1. A policyholder is randomly chosen. If Ai 
denotes the event that this policyholder will make a claim 
in year i, show that 

Give an intuitive explanation of why the preceding 
inequality is true.:_ 

47. An urn contains S white and 10 black balls. A fair die 
is rolled and that number of balls is randomly chosen from 
the urn. What is the probability that all of the balls selected 
are white? What is the conditional probability that the die 
landed on 3 if all the balls selected are white? 

48. Each of 2 cabinets identical in appearance has 2 draw
ers. Cabinet A contains a silver coin in each drawer, and 
cabinet B contains a silver coin in one of its drawers and a 
gold coin in the other. A cabinet is randomly selected, one 
of its drawers is opened, and a silver coin is found. What 
is the probability that there is a silver coin in the other 
drawer? 

approximately .268 if the man does have cancer. If, on the 
basis of other factors, a physician is 70 percent certain that 
a male has prostate cancer, what is the conditional proba
bility that he has the cancer given that 
(a) the test indicated an elevated PSA level? 
(b) the test did not indicate an elevated PSA level? 

Repeat the preceding calculation, this time assuming that 
the physician initially believes that there is a 30 percent 
chance that the man has prostate cancer. 

50. Suppose that an insurance company classifies people 
into one of three classes: good risks, average risks, and 
bad risks. The company's records indicate that the prob
abilities that good-, average-, and bad-risk persons will be 
involved in an accident over a 1-year span are, respec
tively, .OS, .lS, and .30. If 20 percent of the population is a 
good risk, SO percent an average risk, and 30 percent a bad 
risk, what proportion of people have accidents in a fixed 
year? If policyholder A had no accidents in 2012, what is 
the probability that he or she is a good risk? is an average 
risk? 

51. A worker has asked her supervisor for a letter of 
recommendation for a new job. She estimates that there 
is an 80 percent chance that she will get the job if she 
receives a strong recommendation, a 40 percent chance if 
she receives a moderately good recommendation, and a 
10 percent chance if she receives a weak recommendation. 
She further estimates that the probabilities that the rec
ommendation will be strong, moderate, and weak are .7, 
.2, and .1, respectively. 
(a) How certain is she that she will receive the new job 
offer? 
(b) Given that she does receive the offer, how likely 
should she feel that she received a strong recommenda
tion? a moderate recommendation? a weak recommenda
tion? 
(c) Given that she does not receive the job offer, how 
likely should she feel that she received a strong recommen
dation? a moderate recommendation? a weak recommen
dation? 

52. A high school student is anxiously waiting to receive 
mail telling her whether she has been accepted to a certain 
college. She estimates that the conditional probabilities of 
receiving notification on each day of next week, given that 
she is accepted and that she is rejected, are as follows: 

49. Prostate cancer is the most common type of cancer 
found in males. As an indicator of whether a male has Day P(mailjaccepted) P(maillrejected) 
prostate cancer, doctors often perform a test that measures 
the level of the prostate-specific antigen (PSA) that is pro
duced only by the prostate gland. Although PSA levels 
are indicative of cancer, the test is notoriously unreliable. 
Indeed, the probability that a noncancerous man will have 
an elevated PSA level is approximately .13S, increasing to 

Monday 
Tuesday 
Wednesday 
Thursday 
Friday 

.lS 

.20 

.2S 

.lS 

.10 

.OS 

.10 

.10 

.lS 

.20 
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She estimates that her probability of being accepted is .6. 
(a) What is the probability that she receives mail on Mon
day? 
(b) What is the conditional probability that she receives 
mail on Tuesday given that she does not receive mail on 
Monday? 
( c) If there is no mail through Wednesday, what is the con
ditional probability that she will be accepted? 
(d) What is the conditional probability that she will be 
accepted if mail comes on Thursday? 
(e) What is the conditional probability that she will be 
accepted if no mail arrives that week? 

SJ. A parallel system functions whenever at least one of its 
components works. Consider a parallel system of n compo
nents, and suppose that each component works indepen
dently with probability ! . Find the conditional probability 
that component 1 works given that the system is function
ing. 

S4. If you had to construct a mathematical model for 
events E and F, as described in parts (a) through (e), 
would you assume that they were independent events? 
Explain your reasoning. 

(a) Eis the event that a businesswoman has blue eyes, and 
F is the event that her secretary has blue eyes. 
(b) Eis the event that a professor owns a car, and Fis the 
event that he is listed in the telephone book. 
(c) Eis the event that a man is under 6 feet tall, and Fis 
the event that he weighs more than 200 pounds. 
(d) Eis the event that a woman lives in the United States, 
and F is the event that she lives in the Western Hemi
sphere. 
(e) Eis the event that it will rain tomorrow, and Fis the 
event that it will rain the day after tomorrow. 

SS. In a class, there are 4 first-year boys, 6 first-year girls, 
and 6 sophomore boys. How many sophomore girls must 
be present if sex and class are to be independent when a 
student is selected at random? 

S6. Suppose that you continually collect coupons and that 
there are m different types. Suppose also that each time a 
new coupon is obtained, it is a type i coupon with proba
bility Pi, i = 1, ... , m. Suppose that you have just collected 
your nth coupon. What is the probability that it is a new 
type? 

Hint: Condition on the type of this coupon. 

ST. A simplified model for the movement of the price of 
a stock supposes that on each day the stock's price either 
moves up 1 unit with probability p or moves down 1 unit 
with probability 1 - p. The changes on different days are 
assumed to be independent. 
(a) What is the probability that after 2 days the stock will 
be at its original price? 

(b) What is the probability that after 3 days the stock's 
price will have increased by 1 unit? 
(c) Given that after 3 days the stock's price has increased 
by 1 unit, what is the probability that it went up on the first 
day? 

SB. Suppose that we want to generate the outcome of the 
flip of a fair coin, but that all we have at our disposal is a 
biased coin that lands on heads with some unknown proba
bility p that need not be equal to ! . Consider the following 
procedure for accomplishing our task: 

1. Flip the coin. 
2. Flip the coin again. 
3. If both flips land on heads or both land on tails, return 

to step 1. 
4. Let the result of the last flip be the result of the experi-

ment. 

(a) Show that the result is equally likely to be either heads 
or tails. 
(b) Could we use a simpler procedure that ~ontinues to flip 
the coin until the last two flips are different and then lets 
the result be the outcome of the final flip? 

S9. Independent flips of a coin that lands on heads with 
probability p are made. What is the probability that the 
first four outcomes are 
(a) H, H, H, H? 
(b) T, H, H, H? 
(c) What is the probability that the pattern T, H, H, H 
occurs before the pattern H, H, H, H? 

Hint for part (c): How can the pattern H, H, H, H occur 
first? 

60. The color of a person's eyes is determined by a single 
pair of genes. If they are both blue-eyed genes, then the 
person will have blue eyes; if they are both brown-eyed 
genes, then the person will have brown eyes; and if one of 
them is a blue-eyed gene and the other a brown-eyed gene, 
then the person will have brown eyes. (Because of the 
latter fact, we say that the brown-eyed gene is dominant 
over the blue-eyed one.) A newborn child independently 
receives one eye gene from each of its parents, and the 
gene it receives from a parent is equally likely to be either 
of the two eye genes of that parent. Suppose that Smith 
and both of his parents have brown eyes, but Smith's sister 
has blue eyes. 
(a) What is the probability that Smith possesses a blue
eyed gene? 
(b) Suppose that Smith's wife has blue eyes. What is the 
probability that their first child will have blue eyes? 
(c) If their first child has brown eyes, what is the probabil
ity that their next child will also have brown eyes? 

61. Genes relating to albinism are denoted by A and a. 
Only those people who receive the a gene from both 
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parents will be albino. Persons having the gene pair A, 
a are normal in appearance and, because they can pass 
on the trait to their offspring, are called carriers. Sup
pose that a normal couple has two children, exactly one 
of whom is an albino. Suppose that the nonalbino child 
mates with a person who is known to be a carrier for 
albinism. 
(a) What is the probability that their first offspring is an 
albino? 
(b) What is the conditional probability that their second 
offspring is an albino given that their firstborn is not? 

62. Barbara and Dianne go target shooting. Suppose that 
each of Barbara's shots hits a wooden duck target with 
probability pi, while each shot of Dianne's hits it with 
probability pz. Suppose that they shoot simultaneously at 
the same target. If the wooden duck is knocked over (indi
cating that it was hit), what is the probability that 
(a) both shots hit the duck? 
(b) Barbara's shot hit the duck? 

What independence assumptions have you made? 

63. A and B are involved in a duel. The rules of the duel 
are that they are to pick up their guns and shoot at each 
other simultaneously. If one or both are hit, then the duel 
is over. If both shots miss, then they repeat the process. 
Suppose that the results of the shots are independent and 
that each shot of A will hit B with probability p A, and each 
shot of B will hitA with probability PB· What is 
(a) the probability that A is not hit? 
(b) the probability that both duelists are hit? 
(c) the probability that the duel ends after the nth round 
of shots? 
(d) the conditional probability that the duel ends after the 
nth round of shots given that A is not hit? 

(a) 

(e) the conditional probability that the duel ends after the 
nth round of shots given that both duelists are hit? 

64. A true-false question is to be posed to a husband-and
wife team on a quiz show. Both the husband and the wife 
will independently give the correct answer with probabil
ity p. Which of the following is a better strategy for the 
couple? 
(a) Choose one of them and let that person answer the 
question. 
(b) Have them both consider the question, and then either 
give the common answer if they agree or, if they disagree, 
flip a coin to determine which answer to give. 

65. Assume, as in Example 3h, that 64 percent of twins are 
of the same sex. Given that a newborn set of twins is of the 
same sex, what is the conditional probability that the twins 
are identical? 

66. The probability of the closing of the ith relay in the cir
cuits shown in Figure 4 is given by Pi. i = 1, 2, 3, 4, 5. If 
all relays function independently, what is the probability 
that a current flows between A and B for the respective 
circuits? 

Hint for (b): Condition on whether relay 3 closes. 

67. An engineering system consisting of n components is 
said to be a k-out-of-n system (k s n) if the system func
tions if and only if at least k of the n components function. 
Suppose that all components function independently of 
one another. 
(a) If the ith component functions with probability Pi, i = 
1, 2, 3, 4, compute the probability that a 2-out-of-4 system 
functions. 
(b) Repeat part (a) for a 3-out-of-5 system. 

A r-<-< l__/~B 
~ /_Js~ 

3 ----4 

(b) 

Figure 4 Circuits for Problem 66. 
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(c) Repeat for a k-out-of-n system when all the P; equalp 
(thatis,P; =p,i= 1,2, ... ,n). 

68. In Problem 66a, find the conditional probability that 
relays 1 and 2 are both closed given that a current flows 
fromA toB. 

69. A certain organism possesses a pair of each of 5 dif
ferent genes (which we will designate by the first 5 letters 
of the English alphabet). Each gene appears in 2 forms 
(which we designate by lowercase and capital letters). The 
capital letter will be assumed to be the dominant gene, 
in the sense that if an organism possesses the gene pair 
xX, then it will outwardly have the appearance of the X 
gene. For instance, if X stands for brown eyes and x for 
blue eyes, then an individual having either gene pair XX 
or xX will have brown eyes, whereas one having gene pair 
xx will have blue eyes. The characteristic appearance of 
an organism is called its phenotype, whereas its genetic 
constitution is called its genotype. (Thus, 2 organisms with 
respective genotypes aA, bB, cc, dD, ee and AA, BB, cc, 
DD, ee would have different genotypes but the same phe
notype.) In a mating between 2 organisms, each one con
tributes, at random, one of its gene pairs of each type. 
The 5 contributions of an organism (one of each of the 5 
types) are assumed to be independent and are also inde
pendent of the contributions of the organism's mate. In a 
mating between organisms having genotypes aA, bB, c~ 
dD, eE and aa, bB, cc, Dd, ee what is the probability that 
the progeny will (i) phenotypically and (ii) genotypically 
resemble 

(a) the first parent? 
(b) the second parent? 
(c) either parent? 
(d) neither parent? 

70. There is a 50-50 chance that the queen carries the gene 
for hemophilia. If she is a carrier, then each prince has a 
50-50 chance of having hemophilia. If the queen has had 
three princes without the disease, what is the probability 
that the queen is a carrier? If there is a fourth prince, what 
is the probability that he will have hemophilia? 

71. On the morning of September 30, 1982, the won-lost 
records of the three leading baseball teams in the Western 
Division of the National League were as follows: 

Team Won Lost 

and each game is equally likely to be won by either par
ticipant. For each team, what is the probability that it will 
win the division title? If two teams tie for first place, they 
have a playoff game, which each team has an equal chance 
of winning. 

72. A town council of 7 members contains a steering com
mittee of size 3. New ideas for legislation go first to the 
steering committee and then on to the council as a whole 
if at least 2 of the 3 committee members approve the leg
islation. Once at the full council, the legislation requires a 
majority vote (of at least 4) to pass. Consider a new piece 
of legislation, and suppose that each town council member 
will approve it, independently, with probability p. What 
is the probability that a given steering committee mem
ber's vote is decisive in the sense that if that person's vote 
were reversed, then the final fate of the legislation would 
be reversed? What is the corresponding probability for a 
given council member not on the steering committee? 

73. Suppose that each child born to a co~ple is equally 
likely to be a boy or a girl, independently of the sex dis
tribution of the other children in the family. For a couple 
having 5 children, compute the probabilities of the follow
ing events: 

(a) All children are of the same sex. 
(b) The 3 eldest are boys and the others girls. 
(c) Exactly 3 are boys. 
( d) The 2 oldest are girls. 
(e) There is at least 1 girl. 

74. A and B alternate rolling a pair of dice, stopping either 
when A rolls the sum 9 or when B rolls the sum 6. Assum
ing that A rolls first, find the probability that the final roll 
is made by A. 

75. In a certain village, it is traditional for the eldest son 
(or the older son in a two-son family) and his wife to be 
responsible for taking care of his parents as they age. In 
recent years, however, the women of this village, not want
ing that responsibility, have not looked favorably upon 
marrying an eldest son. 

(a) If every family in the village has two children, what 
proportion of all sons are older sons? 
(b) If every family in the village has three children, what 
proportion of all sons are eldest sons? 
Assume that each child is, independently, equally likely to 
be either a boy or a girl. 

Atlanta Braves 
San Francisco Giants 
Los Angeles Dodgers 

87 
86 
86 

72 '76. Suppose that E and F are mutually exclusive events 
73 of an experiment. Show that if independent trials of this 
73 experiment are performed, then E will occur before F with 

----------------- probability P(E)/[P(E) + P(F)]. 
Each team had 3 games remaining. All 3 of the Giants' 
games were with the Dodgers, and the 3 remaining games 77. Consider an unending sequence of independent trials, 
of the Braves were against the San Diego Padres. Suppose where each trial is equally likely to result in any of the 
that the outcomes of all remaining games are independent outcomes 1, 2, or 3. Given that outcome 3 is the last of the 
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three outcomes to occur, find the conditional probability with probability .45, and the successive changes are inde
that pendent, what is the probability that the investor retires a 

(a) the first trial results in outcome 1; 
(b) the first two trials both result in outcome 1. 

78. A and B play a series of games. Each game is indepen
dently won by A with probability p and by B with prob
ability 1 - p. They stop when the total number of wins 
of one of the players is two greater than that of the other 
player. The player with the greater number of total wins is 
declared the winner of the series. 

(a) Find the probability that a total of 4 games are played. 
(b) Find the probability that A is the winner of the series. 

winner? 

82. A and B flip coins. A starts and continues flipping until 
a tail occurs, at which point B starts flipping and continues 
until there is a tail. Then A takes over, and so on. Let P1 be 
the probability of the coin landing on heads when A flips 
and P2 when B flips. The winner of the game is the first 
one to get 

(a) 2 heads in a row; 
(b) a total of 2 heads; 
(c) 3 heads in a row; 
( d) a total of 3 heads. 

79. In successive rolls of a pair of fair dice, what is the In each case, find the probability that A wins. 
probability of getting 2 sevens before 6 even numbers? 

80. In a certain contest, the players are of equal skill and 
the probability is ~ that a specified one of the two contes
tants will be the victor. In a group of2n players, the players 
are paired off against each other at random. The 2n-l win
ners are again paired off randomly, and so on, until a single 
winner remains. Consider two specified contestants, A and 
B, and define the events Ai, i s n, Eby 

A plays in exactly i contests 

A and B never play each other 

(a) Find P(Ai). i = 1, ... , n. 
(b) Find P(E). 

(c) Let Pn = P(E). Show that 

1 2n - 2 (1)2 

Pn = 2n - 1 + 2n - 1 2 Pn-1 

and use this formula to check the answer you obtained in 
part (b). 
Hint: Find P(E) by conditioning on which of the events 
A;, i = 1, ... , n occur. In simplifying your answer, use the 
algebraic identity 

n-1 l n-1 ( 1) n 
"'"'ixi-1 = - nx + n - x 
~ (1 - x)2 
1=1 

For another approach to solving this problem, note that 
there are a total of 2n - 1 games played. 
(d) Explain why 2n - 1 games are played. 
Number these games, and let B; denote the event that A 
and B play each other in game i, i = 1, ... , 2n - 1. 
(e) What is P(Bi)? 
(f) Use part (e) to find P(E). 

81. An investor owns shares in a stock whose present value 
is 25. She has decided that she must sell her stock if it 
goes either down to 10 or up to 40. If each change of price 
is either up 1 point with probability .55 or down 1 point 

83. Die A has 4 red and 2 white faces, whereas die B has 2 
red and 4 white faces. A fair coin is flipped once. If it lands 
on heads, the game continues with die A; if it lands on tails, 
then die B is to be used. 

(a) Show that the probability of red at any throw is ~· 
(b) If the first two throws result in red, what is the proba
bility of red at the third throw? 
( c) If red turns up at the first two throws, what is the prob
ability that it is die A that is being used? 

84. An urn contains 12 balls, of which 4 are white. Three 
players-A, B, and C-successively draw from the urn, A 
first, then B, then C, then A, and so on. The winner is the 
first one to draw a white ball. Find the probability of win
ning for each player if 

(a) each ball is replaced after it is drawn; 
(b) the balls that are withdrawn are not replaced. 

85. Repeat Problem 84 when each of the 3 players selects 
from his own urn. That is, suppose that there are 3 differ
ent urns of 12 balls with 4 white balls in each urn. 

86. Let S = {1,2, ... ,n} and suppose that A and Bare, 
independently, equally likely to be any of the 2n subsets 
(including the null set and S itself) of S. 

(a) Show that 

P{A CB}= (~r 
Hint: Let N(B) denote the number of elements in B. Use 

n 

P{A C B} = LP{A c BIN(B) = i}P{N(B) = i} 
i=O 

showthatP{AB = 01 = (~r. 
87. Consider Example 2a, but now suppose that when the 
key is in a certain pocket, there is a 10 percent chance that 
a search of that pocket will not find the key. Let R and 
L be, respectively, the events that the key is in the right
hand pocket of the jacket and that it is in the left-hand 
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pocket. Also, let SR be the event that a search of the right
hand jacket pocket will be successful in finding the key, 
and let UL be the event that a search of the left-hand jacket 
pocket will be unsuccessful and, thus, not find the key. Find 
P(SRIUL), the conditional probability that a search of the 
right-hand pocket will find the key given that a search of 
the left-hand pocket did not, by 
(a) using the identity 

P(S IU ) = P(SRUL) 
R L P(UL) 

determining P(SRUL) by conditioning on whether or not 
the key is in the right-hand pocket, and determining P( UL) 
by conditioning on whether or not the key is in the left
hand pocket; 
(b) using the identity 

P(SRiUL) = P(SRIRUL)P(RIUL) 

+ P(SRIRcUL)P(RciUL) 

88. In Example Se, what is the conditional probability that 
the ith coin was selected given that the first n trials all 
result in heads? 

Theoretical Exercises 

I. Show that if P(A) > 0, then 

P(ABIA) ;=:: P(ABIA u B) 

2. Let A c B. Express the following probabilities as simply 
as possible: 

3. Consider a school community of m families, with ni of 
k 

them having i children, i = 1, ... , k, :L ni = m. Consider 
i=l 

the following two methods for choosing a child: 

1. Choose one of the m families at random and then ran
domly choose a child from that family. 

k 
2. Choose one of the :L ini children at random. 

i=l 

Show that method 1 is more likely than method 2 to result 
in the choice of a firstborn child. 
Hint: In solving this problem, you will need to show that 

89. In Laplace's rule of succession (Example Se), are the 
outcomes of the successive flips independent? Explain. 

90. A person tried by a 3-judge panel is declared guilty if 
at least 2 judges cast votes of guilty. Suppose that when 
the defendant is in fact guilty, each judge will indepen
dently vote guilty with probability .7, whereas when the 
defendant is in fact innocent, this probability drops to 
.2. If 70 percent of defendants are guilty, compute the 
conditional probability that judge number 3 votes guilty 
given that 
(a) judges 1 and 2 vote guilty; 
(b) judges 1 and 2 cast 1 guilty and 1 not guilty vote; 
( c) judges 1 and 2 both cast not guilty votes. 

Let Ei, i = 1, 2, 3 denote the event that judge i casts a guilty 
vote. Are these events independent? Are they condition
ally independent? Explain. 

91. Suppose that n independent trials, each of which 
results in any of the outcomes 0, 1, or 2, with respective 
probabilities po,p1, and p2, I5=oPi = 1, are performed. 
Find the probability that outcomes 1 and 2 both occur at 
least once. 

To do so, multiply the sums and show that for all pairs i, j, 
the coefficient of the term ninj is greater in the expression 
on the left than in the one on the right. 

4. A ball is in any one of n boxes and is in the ith box with 
probability Pi. If the ball is in box i, a search of that box will 
uncover it with probability ai. Show that the conditional 
probability that the ball is in box j, given that a search of 
box i did not uncover it, is 

Pj 
if j =F- i 

1 - aiPi 

(1 - ai)Pi 
ifj = i 

1 - aiPi 

S. (a) Prove that if E and Fare mutually exclusive, then 

P E E U F) = P(E) 
( I P(E) + P(F) 

(b) Prove that if Ei,i ;=:: 1 are mutually exclusive, then 
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6. Prove that if El, Ez, ... , En are independent events, has a positive mammography, what is the probability she 
then has breast cancer? 

n 

P(E1 U Ez U · · · U En)= 1 - n[l - P(Ei)] 
i=l 

1. (a) An urn contains n white and m black balls. The balls 
are withdrawn one at a time until only those of the same 
color are left. Show that with probability n/(n + m), they 
are all white. 

Hint: Imagine that the experiment continues until all the 
balls are removed, and consider the last ball withdrawn. 
(b) A pond contains 3 distinct species of fish, which we 
will call the Red, Blue, and Green fish. There are r Red, b 
Blue, and g Green fish. Suppose that the fish are removed 
from the pond in a random order. (That is, each selection is 
equally likely to be any of the remaining fish.) What is the 
probability that the Red fish are the first species to become 
extinct in the pond? 

Hint: Write P{R} = P{RBG} + P{RGB}, and compute the 
probabilities on the right by first conditioning on the last 
species to be removed. 

8. Let A, B, and C be events relating to the experiment of 
rolling a pair of dice. 

(a) If 

P(AIC) > P(BIC) and P(AICC) > P(BICC) 

either prove that P(A) > P(B) or give a counterexample 
by defining events A, B, and C for which that relationship 
is not true. 
(b) If 

P(AIC) >~P(AICC) and P(BIC) > P(BICC) 

either prove that P(ABIC) > P(ABICC) or give a coun
terexample by defining events A,B, and C for which that 
relationship is not true. 
Hint: Let C be the event that the sum of a pair of dice is 
10; let A be the event that the first die lands on 6; let B be 
the event that the second die lands on 6. 

9. Consider two independent tosses of a fair coin. Let A 
be the event that the first toss results in heads, let B be 
the event that the second toss results in heads, and let 
C be the event that in both tosses the coin lands on the 
same side. Show that the events A, B, and Care pairwise 
independent-that is, A and Bare independent, A and C 
are independent, and B and C are independent-but not 
independent. 

I 0. 1\vo percent of women age 45 who participate in rou
tine screening have breast cancer. Ninety percent of those 
with breast cancer have positive mammographies. Eight 
percent of the women who do not have breast cancer will 
also have positive mammographies. Given that a woman 

11. In each of n independent tosses of a coin, the coin lands 
on heads with probability p. How large need n be so that 
the probability of obtaining at least one head is at least ! ? 

12. Show that 0 s ai s 1, i = 1, 2, ... , then 

00 [ i-1 ] 00 tr a; D(l _ aj) + a(l -a;)= 1 

Hint: Suppose that an infinite number of coins are to be 
flipped. Let a; be the probability that the ith coin lands on 
heads, and consider when the first head occurs. 

13. The probability of getting a head on a single toss of a 
coin is p. Suppose that A starts and continues to flip the 
coin until a tail shows up, at which point B starts flipping. 
Then B continues to flip until a tail comes up, at which 
point A takes over, and so on. Let Pn,m denote the prob
ability that A accumulates a total of n heads before B 
accumulates m. Show that 

Pn,m = pPn-1,m + (1 - p)(l - Pm,n) 

* 14. Suppose that you are gambling against an infinitely 
rich adversary and at each stage you either win or lose 1 
unit with respective probabilities p and 1 - p. Show that 
the probability that you eventually go broke is 

1 ifp s ! 
(q/p)i ifp > ! 

where q = 1 - p and where i is your initial fortune. 

IS. Independent trials that result in a success with prob
ability p are successively performed until a total of r suc
cesses is obtained. Show that the probability that exactly n 
trials are required is 

Use this result to solve the problem of the points (Exam
ple 4j). 

Hint: In order for it to take n trials to obtain r successes, 
how many successes must occur in the first n - 1 trials? 

16. Independent trials that result in a success with 
probability p and a failure with probability 1 - p 
are called Bernoulli trials. Let Pn denote the probability 
that n Bernoulli trials result in an even number of suc
cesses (0 being considered an even number). Show that 

Pn = p(l - Pn-1) + (1 - p)Pn-1 n ~ 1 
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and use this formula to prove (by induction) that 

p n = 1 + (1 - 2p )n 

2 

17. Suppose that n independent trials are performed, with 
trial i being a success with probability l/(2i + 1). Let Pn 
denote the probability that the total number of successes 
that result is an odd number. 

(a) Find Pn for n = 1, 2, 3, 4, 5. 
(b) Conjecture a general formula for Pn. 

(c) Derive a formula for Pn in terms of Pn-l· 

( d) Verify that your conjecture in part (b) satisfies the 
recursive formula in part (c). Because the recursive for
mula has a unique solution, this then proves that your 
conjecture is correct. 

18. Let Qn denote the probability that .no run of 3 consec
utive heads appears in n tosses of a fair coin. Show that 

1 1 1 
Qn = zQn-1 + 4Qn-2 + gQn-3 

Qo =Qi= Q2=1 

Find Qs. 

Hint: Condition on the first tail. 

19. Consider the gambler's ruin problem, with the excep
tion that A and B agree to play no more than n games. 
Let P n,i denote the probability that A winds up with all the 
money when A starts with i and B starts with N - i. Derive 
an equation for Pn,i in terms of Pn-1, i+l and Pn-1, i-1· and 
compute P1,3, N = 5. 

20. Consider two urns, each containing both white and 
black balls. The probabilities of drawing white balls from 
the first and second urns are, respectively, p and p'. Balls 
are sequentially selected with replacement as follows: 
With probability a, a ball is initially chosen from the first 
um, and with probability 1 - a, it is chosen from the sec
ond um. The subsequent selections are then made accord
ing to the rule that whenever a white ball is drawn (and 
replaced), the next ball is drawn from the same um, but 
when a black ball is drawn, the next ball is taken from the 
other um. Let an denote the probability that the nth ball 
is chosen from the first um. Show that 

an+l = an(p + p' - 1) + 1 - p' n ~ 1 

and use this formula to prove that 

1 - p' ( 
an= 2 / + a 

-p-p 
1 - p' ) 

2 - p - p' 

X (p + p' - l)n-1 

Let P n denote the probability that the nth ball selected 
is white. Find Pn. Also, compute limn--*ooan and 

21. The Ballot Problem. In an election, candidate A 
receives n votes and candidate B receives m votes, where 
n > m.Assumingthatallofthe(n + m)!/n!m!orderings 
of the votes are equally likely, let Pn,m denote the proba
bility that A is always ahead in the counting of the votes. 

(a) Compute P2,i, P3,i,P3,2,P4,i,P4,2, P4,3. 

(b) FindPn,1,Pn,2· 
(c) On the basis of your results in parts (a) and (b), con
jecture the value of Pn,m· 

(d) Derive a recursion for Pn,m in terms of Pn-1,m and 
Pn,m-1 by conditioning on who receives the last vote. 
(e) Use part (d) to verify your conjecture in part (c) by an 
induction proof on n + m. 

22. As a simplified model for weather forecasting, suppose 
that the weather (either wet or dry) tomorrow will be the 
same as the weather today with probability p. Show that 
the weather is dry on January 1, then Pn, the probability 
that it will be dry n days later, satisfies 

Pn = (2p - l)Pn-1 + (1 - p) 

Po= 1 

Prove that 

1 1 n 
Pn = 2 + 2(2p - 1) 

n~l 

n ~ 0 

23. A bag contains a white and b black balls. Balls are cho
sen from the bag according to the following method: 

1. A ball is chosen at random and is discarded. 
2. A second ball is then chosen. If its color is different 

from that of the preceding ball, it is replaced in the 
bag and the process is repeated from the beginning. If 
its color is the same, it is discarded and we start from 
step 2. 

In other words, balls are sampled and discarded until a 
change in color occurs, at which point the last ball is 
returned to the urn and the process starts anew. Let Pa,b 
denote the probability that the last ball in the bag is white. 
Prove that 

1 
Pb=-a, 2 

Hint: Use induction on k = a + b. 

*24. A round-robin tournament of n contestants is a tour

nament in which each of the ( ~ ) pairs of contestants 

play each other exactly once, with the outcome of any 
play being that one of the contestants wins and the other 
loses. For a fixed integer k, k < n, a question of interest is 
whether it is possible that the tournament outcome is such 
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that for every set of k players, there is a player who beat 
each member of that set. Show that if 

( z) [I -nrr < I 
then such an outcome is possible. 

Hint: Suppose that the results of the games are indepen
dent and that each game is equally likely to be won by 

either contestant. Number the ( ~ ) sets of k contestants, 

and let Bi denote the event that no contestant beat all of 
the k players in the ith set. Then use Boole's inequality to 

bound P ( yBi). 
25. Prove directly that 

P(EIF) = P(E!FG)P(GIF) + P(EIF(JC)P(GclF) 

26. Prove the equivalence of Equations (S.11) and (S.12). 

27. Extend the definition of conditional independence to 
more than 2 events. 

28. Prove or give a counterexample. If E1 and E2 are inde
pendent, then they are conditionally independent given F. 

29. In Laplace's rule of succession (Example Se), show 
that if the first n flips all result in heads, then the 
conditional probability that the next m flips also result in 
all heads is (n + l)/(n + m + 1). 

Self-Test Problems and Exercises 

-I. In a game of bridge, West has no aces. What is the prob-
ability of his partner's having (a) no aces? (b) 2 or more 
aces? (c) What would the probabilities be if West had 
exactly 1 ace? 

2. The probability that a new car battery functions for 
more than 10,000 miles is .8, the probability that it func
tions for more than 20,000 miles is .4, and the probability 
that it functions for more than 30,000 miles is .1. If a new 
car battery is still working after 10,000 miles, what is the 
probability that 

(a) its total life will exceed 20,000 miles? 
(b) its additional life will exceed 20,000 miles? 

3. How can 20 balls, 10 white and 10 black, be put into two 
urns so as to maximize the probability of drawing a white 
ball if an urn is selected at random and a ball is drawn at 
random from it? 

4. Urn A contains 2 white balls and 1 black ball, whereas 
urn B contains 1 white ball and S black balls. A ball is 
drawn at random from urn A and placed in urn B. A 

30. In Laplace's rule of succession (Example Se), suppose 
that the first n flips resulted in r heads and n - r tails. Show 
that the probability that the (n + 1) flip turns up heads is 
(r + l)/(n + 2). To do so, you will have to prove and use 
the identity 

n m n.m. 11 I I 

o y (1 - y) dy = (n + m + 1)! 

Hint: To prove the identity, let C(n, m) = J~ yn(l - yrdy. 
Integrating by parts yields 

m 
C(n,m) = --1C(n + l,m - 1) 

n+ 

Starting with C(n,0) = l/(n + 1), prove the identity by 
induction on m. 

31. Suppose that a nonmathematical, but philosophically 
minded, friend of yours claims that Laplace's rule of suc
cession must be incorrect because it can lead to ridicu
lous conclusions. "For instance," says he, "the rule states 
that if a boy is 10 years old, having lived 10 years, the 
boy has probability H of living another year. On the 
other hand, if the boy has an 80-year-old grandfather, 
then, by Laplace's rule, the grandfather has probability 
I! of surviving another year. However, this is ridiculous. 
Clearly, the boy is more likely to survive an additional 
year than the grandfather is." How would you answer your 
friend? 

ball is then drawn from urn B. It happens to be white. 
What is the probability that the ball transferred was 
white? 

5. An urn has r red and w white balls that are randomly 
removed one at a time. Let Ri be the event that the ith ball 
removed is red. Find 

(a) P(Ri) 

(b) P(RslR3) 
(c) P(R3IRs) 

6. An urn contains b black balls and r red balls. One of the 
balls is drawn at random, but when it is put back in the urn, 
c additional balls of the same color are put in with it. Now, 
suppose that we draw another ball. Show that the prob
ability that the first ball was black, given that the second 
ball drawn was red, is b/(b + r + c). 

7. A friend randomly chooses two cards, without replace
ment, from an ordinary deck of S2 playing cards. In each of 
the following situations, determine the conditional proba
bility that both cards are aces. 
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(a) You ask your friend if one of the cards is the ace of 
spades, and your friend answers in the affirmative. 
(b) You ask your friend if the first card selected is an ace, 
and your friend answers in the affirmative. 
(c) You ask your friend if the second card selected is an 
ace, and your friend answers in the affirmative. 
(d) You ask your friend if either of the cards selected is an 
ace, and your friend answers in the affirmative. 

a. Show that 

P(HIE) P(H) P(EIH) 
P(GIE) = P(G) P(EIG) 

Suppose that, before new evidence is observed, the 
hypothesis H is three times as likely to be true as is the 
hypothesis G. If the new evidence is twice as likely when 
G is true than it is when His true, which hypothesis is more 
likely after the evidence has been observed? 

9. You ask your neighbor to water a sickly plant while you 
are on vacation. Without water, it will die with probability 
.8; with water, it will die with probability .15. You are 90 
percent certain that your neighbor will remember to water 
the plant. 
(a) What is the probability that the plant will be alive when 
you return? 
(b) If the plant is dead upon your return, what is the prob
ability that your neighbor forgot to water it? 

I 0. Six balls are to be randomly chosen from an urn con
taining 8 red, 10 green, and 12 blue balls. 
(a) What is the probability at least one red ball is chosen? 
(b) Given that no red balls are chosen, what is the con
ditional probability that there are exactly 2 green balls 
among the 6 chosen? 

11. A type C battery is in working condition with proba
bility .7, whereas a type D battery is in working condition 
with probability .4. A battery is randomly chosen from a 
bin consisting of 8 type C and 6 type D batteries. 

(a) What is the probability that the battery works? 
(b) Given that the battery does not work, what is the con
ditional probability that it was a type C battery? 

12. Maria will take two books with her on a trip. Suppose 
that the probability that she will like book 1 is .6, the prob
ability that she will like book 2 is .5, and the probability 
that she will like both books is .4. Find the conditional 
probability that she will like book 2 given that she did not 
like book 1. 

13. Balls are randomly removed from an um that initially 
contains 20 red and 10 blue balls. 
(a) What is the probability that all of the red balls are 
removed before all of the blue ones have been removed? 
Now suppose that the um initially contains 20 red, 10 blue, 
and 8 green balls. 

(b) Now what is the probability that all of the red balls are 
removed before all of the blue ones have been removed? 
(c) What is the probability that the colors are depleted in 
the order blue, red, green? 
(d) What is the probability that the group of blue balls is 
the first of the three groups to be removed? 

14. A coin having probability .8 of landing on heads is 
flipped. A observes the result-either heads or tails-and 
rushes off to tell B. However, with probability .4, A will 
have forgotten the result by the time he reaches B. If A 
has forgotten, then, rather than admitting this to B, he is 
equally likely to tell B that the coin landed on heads or 
that it landed tails. (If he does remember, then he tells B 
the correct result.) 
(a) What is the probability that B is told that the coin 
landed on heads? 
(b) What is the probability that Bis told the correct result? 
( c) Given that B is told that the coin landed on heads, what 
is the probability that it did in fact land on~ heads? 

15. In a certain species of rats, black dominates over 
brown. Suppose that a black rat with two black parents 
has a brown sibling. 

(a) What is the probability that this rat is a pure black 
rat (as opposed to being a hybrid with one black and one 
brown gene)? 
(b) Suppose that when the black rat is mated with a brown 
rat, all 5 of their offspring are black. Now what is the prob
ability that the rat is a pure black rat? 

16. (a) In Problem 66b, find the probability that a current 
flows from A to B, by conditioning on whether relay 1 
closes. 
(b) Find the conditional probability that relay 3 is closed 
given that a current flows from A to B. 

17. For the k-out-of-n system described in Problem 67, 
assume that each component independently works with 
probability !· Find the conditional probability that com
ponent 1 is working, given that the system works, when 

(a) k = 1,n = 2; 
(b) k = 2,n = 3. 

18. Mr. Jones has devised a gambling system for winning at 
roulette. When he bets, he bets on red and places a bet only 
when the 10 previous spins of the roulette have landed on 
a black number. He reasons that his chance of winning is 
quite large because the probability of 11 consecutive spins 
resulting in black is quite small. What do you think of this 
system? 

19. Three players simultaneously toss coins. The coin 
tossed by A(B)[C] turns up heads with probability 
P1(P2)[P3]. If one person gets an outcome different from 
those of the other two, then he is the odd man out. If there 
is no odd man out, the players flip again and continue to do 
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so until they get an odd man out. What is the probability that you check is defective, what is the conditional proba-
that A will be the odd man? bility that the other one is also defective? 

20. Suppose that there are n possible outcomes of a 
trial, with outcome i resulting with probability Pi. i = 

n 
1, ... , n, L Pi = 1. If two independent trials are observed, 

i=l 
what is the probability that the result of the second trial is 
larger than that of the first? 

21. If A flips n + 1 and B flips n fair coins, show that the 
probability that A gets more heads than B is ~. 
Hint: Condition on which player has more heads after each 
has flipped n coins. (There are three possibilities.) 

22. Prove or give counterexamples to the following state
ments: 
(a) If Eis independent of F and Eis independent of G, 
then Eis independent of F u G. 
(b) If E is independent of F, and E is independent of G, 
and FG = 0, then Eis independent of F U G. 
(c) If Eis independent of F, and Fis independent of G, 
and Eis independent of FG, then G is independent of EF. 

23. Let A and B be events having positive probability. 
State whether each of the following statements is (i) nec
essarily true, (ii) necessarily false, or (iii) possibly true. 
(a) If A and B are mutually exclusive, then they are inde
pendent. 
(b) If A and B are independent, then they are mutually 
exclusive. 
(c) P(A) = P(B) = .6, andA and Bare mutually exclusive. 
(d) P(A) = P(B) = .6, and A and B are independent. 

24. Rank the following from most likely to least likely to 
occur: 

1. A fair coin lands on heads. 
2. Three independent trials, each of which is a success with 

probability .8, all result in successes. 
3. Seven independent trials, each of which is a success with 

probability .9, all result in successes. 

25. 1\vo local factories, A and B, produce radios. Each 
radio produced at factory A is defective with probability 
.05, whereas each one produced at factory B is defective 
with probability .01. Suppose you purchase two radios that 
were produced at the same factory, which is equally likely 
to have been either factory A or factory B. If the first radio 

Answers to Selected Problems 

26. Show that if P(AIB) = 1, then P(BclAc) = 1. 

27. An um initially contains 1 red and 1 blue ball. At each 
stage, a ball is randomly withdrawn and replaced by two 
other balls of the same color. (For instance, if the red ball 
is initially chosen, then there would be 2 red and 1 blue 
balls in the um when the next selection occurs.) Show by 
mathematical induction that the probability that there are 
exactly i red balls in the um after n stages have been com
pleted is ni 1 , 1 s i s n + 1. 

28. A total of 2n cards, of which 2 are aces, are to be ran
domly divided among two players, with each player receiv
ing n cards. Each player is then to declare, in sequence, 
whether he or she has received any aces. What is the 
conditional probability that the second player has no 
aces, given that the first player declares in the affirma
tive, when (a) n = 2? (b) n = 10? (c) n = 100? To 
what does the probability converge as n goes to infinity? 
Why? 

29. There are n distinct types of coupons, and each coupon 
obtained is, independently of prior types collected, of type 
i with probability Pi, L:7=1 Pi = 1. 
(a) If n coupons are collected, what is the probability that 
one of each type is obtained? 
(b) Now suppose that Pl = pz = · · · = Pn = l/n. Let Ei 
be the event that there are no type i coupons among the 
n collected. Apply the inclusion-exclusion identity for the 
probability of the union of events to P(UiEi) to prove the 
identity 

30. Show that for any events E and F, 

P(EIE u F) ~ P(EIF) 

Hint: Compute P(EIE u F) by conditioning on whether F 
occurs. 

31. There is a 60 percent chance that event A will occur. If 
A does not occur, then there is a 10 percent chance that B 
will occur. 

What is the probability that at least one of the events A or 
B will occur? 

L 1/3 
6. 112 
1/33 

2. 1/6; 115; 1/4; 1/3; 1/2; 1 3 •. 339 5. 6/91 16 •. 9835 17 •. 0792; .264 18. .331; .383; .286; .4862 
7. 2/3 8. 1/2 9. 7/11 10 •. 22 

12 •. 504; .3629 14. 351768; 2101768 
lL 1117; 19. 44.29; 41.18 20 •. 4; 1126 2L .496; 3114; 9/62 
15 •. 4848 22. 519; 1/6; 5154 23. 4/9; 1/2 24. 1/3; 1/2 26. 20/21; 
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40/41 28. 3/128; 2911536 29 . . 0893 30. 7112; 3/5 6L 1/6; 3/20 6S . . 4375 69. 9; 9; 18; 110; 4; 4; 8; 120 
33 •. 76, 49176 34. 27/31 3S . . 62, 10119 36. 1/2 all over 128 70. 119; 1118 7L 38/64; 13/64; 13/64 
37. 1/3; 115; 1 38. 12/37 39. 46/185 40. 3/13; 5113; 73. 1/16; 1/32; 5/16; 1/4; 31/32 74. 9/19 7S. 3/4, 7/12 
5152; 15/52 4L 43/459 42. 1.03 percent; .3046 43. 4/9 78. 2p\1 - p) + 2p(l - p)3;p2 /(1 - 2p + 2p2) 79 . .5550 
4S. 1/11 48. 213 SO . . 175; 38/165; 17/33 SL .65; SL .9530 83 • . 5; .6; .8 84. 9/19; 6119; 4/19; 7/15; 53/165; 
56165; 8/65; 1165; 14/35; 12135; 9/35 S2 . . 11; 16/89; 7/33 87. 9116 90. 97/142; 15/26; 33/102 
12127; 3/5; 9/25 SS. 9 S7. (c) 213 60. 2/3; 113; 3/4 

Solutions to Self-Test Problems and Exercises 

I. (a) P(no aces)= ( i~) j ( i~) 
4( 35) 

(b) 1 - P(no aces) - (i~2) 

3 36 
13 - i 

(c) P(i aces) = -'--...L.-T'---~--'-
39 
13 

2. Let L; denote the event that the life ot' the battery is 
greater than 10, 000 X i miles. 
(a) P(L2IL1) = P(L1L2)/P(L1) = P(L2)/P(L1) = 1/2 
(b) P(L3IL1) = P(L1L3)/P(L1) = P(L3)/P(L1) = 1/8 

3. Put 1 white and 0 black balls in um one, and the remain
ing 9 white and 10 black balls in um two. 

4. Let T be the event that the transferred ball is white, and 
let W be the event that a white ball is drawn from urn 
B.Then 

p T W _ P(WI T)P(T) 
( I ) - P(WI T)P(T) + P(WI TC)P(TC) 

(2/7)(2/3) = 4 5 
= (2/7)(2/3) + (1/7)(1/3) I 

P<f'IUR) P<fjs 5. (a) P(EIE u F) =c u = P(E)-t(F) 

since E(E U F) = E and P(E U F) = P(E) + P(F) because 
E and F are mutually exclusive. 
(b) P(E·I L.f.O Ei) = P(E;<V:,ti)) = P(E;) 

P{B, yes to ace of spades} 
(a) P{Biyes to ace of spades} = p f d } {yes to ace o spa es 

( ~ ) ( i ) ( ~ ) ( i1 ) 

= (~2) I (~2) 
=3/51 

(b) Since the second card is equally likely t<:> be any of the 
remaining 51, of which 3 are aces, we see that the answer 
in this situation is also 3/51. 
(c) Because we can always interchange which card is con
sidered first and which is considered second, the result 
should be the same as in part (b ). A more formal argument 
is as follows: 

PB d . } _ P{B, second is ace} 
{ lsecon Is ace - P{ d . } secon IS ace 

P(B) 
=------------~ P(B) + P{first is not ace, second is ace} 

(4/52)(3/51) =----------(4/52)(3/51) + (48/52)(4/51) 

=3/51 

(d) P{Blat least one}= p pl (B) } 
{at east one 

(4/52)(3/51) =------
1 - (48/52)(47 /51) 

= 1/33 

J 1=1 P(LJf 1 1)) !:!1 P(E;) 
Hypothesis His 1.5 times as likely. 

6. Let Bi denote the event that ball i is black, and let 
Ri = Bf. Then 9. Let A denote the event that the plant is alive and let W 

be the event that it was watered. 

P(BIIR2) = P(R2IBI)P(BI) 
P(R2IB1)P(B1) + P(R2IRI)P(R1) 

_ [r/[(b + r + c)][b/(b + r)] 
- [r/(b + r + c)][b/(b + r)] + [(r + c)/(b + r + c)][r/(b + r)] 

b 
b+r+c 

7. Let B denote the event that both cards are aces. 

(a) 

(b) 

P(A) = P(AIW)P(W) + P(AIWC)P(Wc) 

= (.85)(.9) + (.2)(.1) = .785 
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IO. (a) Let R be the event that at least one red ball is cho
sen. Then 

P(R) = 1 - P(Rc) = 1 -

(b) Let G2 be the event there are exactly 2 green balls cho
sen. Working with the reduced sample space yields 

I I. Let W be the event that the battery works, and let C 
and D denote the events that the battery is a type C and 
that it is a type D battery, respectively. 
(a) P(W) = P(WIC)P(C) + P(WID)P(D) = .7(8/14) + 
.4(6/14) = 4/7 
(b) P(clwc) _ P(wc) _ P(Wcf)P(C) _ .3(8/14) _ 4 

- P( C) - /7 - 3/7 - . 

I 2. Let Li be the event that Maria likes book i, i = 1, 2. 
Then 

P(L iU) = P(Ll_L2) = P(Ll_L2) 
2 1 P(LJ) .4 

Using that Lz is the union of the mutually exclusive events 
Li Lz and LJ_ Lz, we see that 

.5 = P(L2) = P(L1L2) + P(LiL2) = .4 + P(LiL2) 

Thus, 

P(L21Li) = ~ = .25 

13. (a) This is the probability that the last ball removed is 
blue. Because e1lch of the 30 balls is equally likely to be the 
last one removed, the probability is 1/3. 
(b) This is the probability that the last red or blue ball to 
be removed is a blue ball. Because it is equally likely to 
be any of the 30 red or blue balls, the probability that it is 
blue is 1/3. 
(c) Let Bi, Rz, G3 denote, respectively, the events that the 
first color removed is blue, the second is red, and the third 
is green. Then 

14. Let H be the event that the coin lands heads, let Th be 
the event that B is told that the coin landed heads, let F 
be the event that A forgets the result of the toss, and let C 
be the event that B is told the correct result. Then 
(a) P(Th) = P(ThiF)P(F) + P(Thipc)p(pc) 

= (.5)(.4) + P(H)(.6) 

= .68 

(b) P(C) = P(CiF)P(F) + P(Cipc)p(pc) 

= (.5)(.4) + 1(.6) = .80 

(c) P(HiTh) = Pfaff,;~) 
Now, 

P(HTh) = P(HThiF)P(F) + P(HThipc)p(pc) 

= P(HIF)P(ThiHF)P(F) + P(H)P(Fc) 

= (.8)(.5)(.4) + (.8)(.6) = .64 

giving the result P(HITh) = .64/.68 = 16/17. 

IS. Since the black rat has a brown sibling, we can con
clude that both of its parents have one black and one 
brown gene. 

(a) P(2 black lat least one) = P(at l:~!l one) = m = 1 
(b) Let F be the event that all 5 offspring are black, let Bz 
be the event that the black rat has 2 black genes, and let 
Bi be the event that it has 1 black and 1 brown gene. Then 

p B _ P(FIB2)P(B2) 
( zlF) - P(FIB2)P(B2) + P(FiBi)P(B1) 

(1)(1/3) 16 
= (1)(1/3) + (1/2)5(2/3) = 17 

I 6. Let F be the event that a current flows from A to B, 
and let Ci be the event that relay i closes. Then 

P(F) = P(FIC1)Pi + P(FICl)(l - P1) 

Now, 

P(FICi) = P(C4 U C2Cs U C3C5) 

= P4 + P2P5 + P3P5 - p4pzp5 

- p4p3p5 - pzp3p5 + p4pzp5p3 
8 20 8 

P(B1R2G3) = P(G3)P(R2iG3)P(B1IR2G3) = 38 30 = 57 Also, 

where P(G3) is just the probability that the very last ball is 
green and P(R2IG3) is computed by noting that given that 
the last ball is green, each of the 20 red and 10 blue balls is 
equally likely to be the last of that group to be removed, so 
the probability that it is one of the red balls is 20/30. (Of 
course, P(B1iR2G3) = 1.) 

(d) P(B1) = P(B1 G2R3) + P(B1R2G3) = ~ /g + /.; 
- 64 - rn 

P(FIC]') = P(C2Cs u C2C3C4) 

= P2Ps + P2P3P4 - pzp3p4p5 

Hence, for part (a), we obtain 

P(F) = P1 (p4 + P2Ps + p3p5 - p4pzp5 

- p4p3p5 - pzp3p5 + p4pzp5p3) 

+ (1 - Pi)pz(p5 + p3p4 - p3p4p5) 
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For part (b), let q; = 1 - Pi· Then 

P(C3!F) = P(FIC3)P(C3)/P(F) 

= p3[l - P(qq u G4CS)]/P(F) 

= p3(l - qlq2 - q4qs + qlq2q4q5)/P(F) 

17. Let A be the event that component 1 is working, and 
let F be the event that the system functions. 

<a> P<A1F) = WR = 9c1S = 1_~e2>2 = ~ 
where P(F) was computed by noting that it is equal to 1 
minus the probability that components 1 and 2 are both 
failed. 
(b) P(AIF) = ™El = P(Fr)P(A) = (3/4)(1/2) = 3 

7(F) (F) (l/2)3+3(1/2)3 4 
where P(F) was computed by noting that it is equal to 
the probability that all 3 components work plus the three 
probabilities relating to exactly 2 of the ·components work
ing. 

18. If we assume that the outcomes of the successive spins 
are independent, then the conditional probability of the 
next outcome is unchanged by the result that the previous 
10 spins landed on black. 

19. Condition on the outcome of the initial tosses: 

P(A odd) = P1 (1 - P2)(l - P3) + (1 - P1)P2P3 

+ P1P2P3P(A odd) 

+ (1 - P1)(l - P2)(l - P3)P(A odd) 

so, 

P(A odd) = P1 (1 - P2)(l - P3) + (1 - P1)P2P3 
P1 + P2 + P3 - P1P2 - P1P3 - P2P3 

20. Let A and B be the events that the first trial is larger 
and that the second is larger, respectively. Also, let E be 
the event that the results of the trials are equal. Then 

1 = P(A) + P(B) + P(E) 

But, by symmetry, P(A) = P(B): thus, 
n 

1 - LP~ 
P(B) = 1 - P(E) = i=l 

2 2 

Another way of solving the problem is to note that 

P(B) = LL P{first trial results in i, second trial results in j} 
i j>i 

=LLPiPi 
i j>i 

To see that the two expressions derived for P(B) are equal, 
observe that 

n n 

1= LPiLP; 
i=l j=l 

= LLPiPj 
j 

=LP~ + L LPiPj 
i pi 

=LP~+ 2LLPiPj 
i i j>i 

21. Let E ={A gets more heads than B}; then 

P(E) = P(EIA leads after both flip n)P(A leads after both flip n) 

+ P(Ei even after both flip n)P(even after both flip n) 

+ P(EIB leads after both flip n)P(B leads after both flip n) 

1 
= P(A leads) + 2P(even) 

Now, by symmetry, 
P(A leads)= P(B leads) 

1 - P(even) 
= 2 

Hence, 

P(E) = ~ 
22. (a) Not true: In rolling 2 dice, let E = {sum is 7}, 
F = {1st die does not land on 4}, and G = {2nd die does 
not land on 3}. Then 

P(EIF u G) = P{7, not (4, 3)} = 5/36 = 5/35 =F P(E) 
P{not(4,3)} 35/36 

(b) P(E(F U G)) = P(EF u EG) 

= P(EF) + P(EG) since EFG = 0 

= P(E)[P(F) + P(G)] 

= P(E)P(F u G) since FG = 0 

( ) p GiEF) = P(EFG) 
c ( P(EF) 

P(E)P(FG) 

P(EF) 
P(E)P(F)P(G) 

P(E)P(F) 

=P(G). 

since Eis independent of FG 

by independence 

23. (a) necessarily false; if they were mutually exclusive, 
then we would have 

0 = P(AB) '# P(A)P(B) 

(b) necessarily false; if they were independent, then we 
would have 

P(AB) = P(A)P(B) > 0 
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(c) necessarily false; if they were mutually exclusive, then Substituting these results into the equation for P(B;) gives 
we would have 

P(A u B) = P(A) + P(B) = 1.2 

(d) possibly true 

24. The probabilities in parts (a), (b), and (c) are .5, (.8)3 = 
.512, and (.9)7 :::::: .4783, respectively. 

25. Let D;, i = 1, 2, denote the event that radio i is defec
tive. Also, let A and B be the events that the radios were 
produced at factory A and at factory B, respectively. Then 

P(D ID ) = P(D1D2) 
2 1 P(D1) 

P(D1D2IA)P(A) + P(D1D2IB)P(B) 
= 

P(D1 IA)P(A) + P(D1 IB)P(B) 

(.05)2(1/2) + (.01)2(1/2) 
= 

(.05)(1/2) + (.01)(1/2) 
= 13/300 

26. We are given that P(AB) = P(B) and must show that 
this implies that P(Bc Ac) = P(A c). One way is as follows: 

P(BcAc) = P((A U B)c) 

= 1 - P(A U B) 

= 1 - P(A) - P(B) + P(AB) 

= 1 - P(A) 
= P(Ac) 

27. The result is true for n = 0. With Ai denoting the 
event that there are i red balls in the urn after stage n, 
assume that 

~ 1 
P(Ai)= --1, 

n+ 
i=l, ... ,n+l 

Now let Bj.j = 1, ... , n + 2, denote the event that there 
are j red balls in the urn after stage n + 1. Then 

n+l 

P(B;) = L P(B;IAi)P(A;) 
i=l 

1 n+l 

= n + 1 L P(B;IA;) 
i=l 

1 
= n + l [P(B;IA;-1) + P(B;IA;)] 

Because there are n + 2 balls in the urn after stage n, it 
follows that P(B;IA;-1) is the probability that a red ball is 
chosen when j - 1 of the n + 2 balls in the um are red 
and P(B;IA;) is the probability that a red ball is not chosen 
when j of the n + 2 balls in the urn are red. Consequently, 

j - 1 
P(B;IA;-1) = --2 , 

n+ 
P(B·IA·) = _n_+_2_-....:...j 

1 1 n + 2 

P(B·)=-1-[j-1 +n+2-j]=-1-
1 n+l n+2 n+2 n+2 

1his completes the induction proof. 

28. If Ai is the event that player i receives an ace, then 

P(A;) = 1 -
1 n - 1 3n - 1 
22n-1=4n-2 

By arbitrarily numbering the aces and noting that the 
player who does not receive ace number one will receive n 
of the remaining 2n - 1 cards, we see that 

Therefore, 

We may regard the card division outcome as the result 
of two trials, where trial i, i = 1, 2, is said to be a suc
cess if ace number i goes to the first player. Because the 
locations of the two aces become independent as n goes 
to infinity, with each one being equally likely to be given 
to either player, it follows that the trials become indepen
dent, each being a success with probability 112. Hence, in 
the limiting case where n-+oo, the problem becomes one 
of determining the conditional probability that two heads 
result, given that at least one does, when two fair coins are 
flipped. Because :fn-::._\ converges to 1/3, the answer agrees 
with that of Example 2b. 

29. (a) For any permutation ii. ... , in of 1, 2, ... , n, the 
probability that the successive types collected is ii, ... , in is 
Pii ···Pin= 0?=1Pi· Consequently, the desired probability . inn ts n. i=lPi· 
(b) For ii. ... , ik all distinct, 

( n k)n 
P(E· ···E-)- --11 'k - n 

which follows because there are no coupons of types 
ii. ... , ik when each of the n independent selections is one 
of the other n - k types. It now follows by the inclusion
exclusion identity that 

Because 1 - P(Ui'::1 Ei) is the probability that one of each 
type is obtained, by part (a) it is equal to ~!.Substituting 
this into the preceding equation gives 
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or 

or n! = t(-l)k(n)(n - k)n 
k=O k 

30. P(EIE U F) = P(EIF(E u F))P(FIE u F) 

+P(E1¥(E U F))P(¥1E U F) 

Using 

gives 

P(EIE U F) = P(EIF)P(FIE u F)+P(EIE¥)P(¥1E u F) 

= P(EiF)P(FIE u F)+P(flCIE u F) 

~ P(EIF)P(FIE U F)+P(EiF)P(flCIE u F) 

=P(EIF) 

31. P(A U B) = P(A U BIA)P(A)+P(A U BIAc)P(Ac) 

= 1(.6) + .1(.4) = .64 
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la 

When an experiment is performed, we are frequently interested mainly in some func
tion of the outcome as opposed to the actual outcome itself. For instance, in tossing 
dice, we are often interested in the sum of the two dice and are not really concerned 
about the separate values of each die. That is, we may be interested in knowing 
that the sum is 7 and may not be concerned over whether the actual outcome was 
(1, 6), (2, 5), (3, 4), ( 4, 3), (5, 2), or (6, 1). Also, in flipping a coin, we may be inter
ested in the total number of heads that occur and not care at all about the actual 
head-tail sequence that results. These quantities of interest, or, more formally, these 
real-valued functions defined on the sample space, are known as random variables. 

Because the value of a random variable is determined by the outcome of the 
experiment, we may assign probabilities to the possible values of the random 
variable. 

Suppose that our experiment consists of tossing 3 fair coins. If we let Y denote the 
number of heads that appear, then Y is a random variable taking on one of the values 
0, 1, 2, and 3 with respective probabilities 

1 
P{Y = O} = P{(T, T, T)} = g 

3 
P{Y = 1} = P{(T, T,H), (T,H, T), (H, T, T)} = 8 

3 
P{Y = 2} = P{(T,H,H),(H, T,H), (H,H, T)} = 8 

1 
P{Y = 3} = P{(H,H,H)} = g 

From Chapter 4 of A First Course in Probability, Ninth Edition. Sheldon Ross. 
Copyright© 2014 by Pearson Education, Inc. All rights reserved. 
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Since Y must take on one of the values 0 through 3, we must have 

1 = P (0{Y = i}) = t P{Y = i} 
1=0 1=0 

which, of course, is in accord with the preceding probabilities. • 
A life insurance agent has 2 elderly clients, each of whom has a life insurance policy 
that pays $100,000 upon death. Let Y be the event that the younger one dies in the 
following year, and let 0 be the event that the older one dies in the following year. 
Assume that Y and 0 are independent, with respective probabilities P(Y) = .05 
and P(O) = .10. If X denotes the total amount of money (in units of $100, 000) that 
will be paid out this year to any of these clients' beneficiaries, then X is a random 
variable that takes on one of the possible values 0, 1, 2 with respective probabilities 

P{X = O} = P(ycOc) = P(Yc)P(Oc) = (.95)(.9) = .855 

P{X = 1} = P(YOc) + P(YcO) = (.05)(.9) + (.95)(.1) = .140 

P{X = 2} = P(YO) = (.05)(.1) = .005 • 

Four balls are to be randomly selected, without replacement, from an urn that con
tains 20 balls numbered 1 through 20. If Xis the largest numbered ball selected, then 
X is a random variable that takes on one of the values 4, 5, ... , 20. Because each of 
the {24°) possible selections of 4 of the 20 balls is equally likely, the probability that X 
takes on each of its possible values is 

i = 4, ... ,20 

This is so because the number of selections that result in X = i is the number of 
selections that result in ball numbered i and three of the balls numbered 1 through 
i - 1 being selected. As there are a)(i31) such selections, the preceding equation 
follows. 

Suppose now that we want to determine P{X > 10}. One way, of course, is to 
just use the preceding to obtain 

20 . 20 e31) 
P{X > 10} = L P{X = z} = L ao 

i=ll i=ll \ 4) 
However, a more direct approach for determining P(X > 10) would be to use 

P{X > 10} = 1 - P{X :s; 10} = 1 - (~) 
(4) 

where the preceding results because X will be less than or equal to 10 when the 4 
balls chosen are among balls numbered 1 through 10. • 

Independent trials consisting of the flipping of a coin having probability p of coming 
up heads are continually performed until either a head occurs or a total of n flips is 
made. If we let X denote the number of times the coin is flipped, then X is a random 
variable taking on one of the values 1, 2, 3, ... , n with respective probabilities 
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P{X = 1} = P{H} = p 

P{X = 2} = P{(T,H)} = (1 - p)p 

P{X = 3} = P{(T, T,H)} = (1 - p)2p 

P{X = n - 1} = P{(T, T, ... , T,H)} = (1 - p)n-2p 

n-2 

P{X = n} = P{(T, T, ... , T, T), (T, T, ... , T,H)} = (1 - p)n-l 

As a check, note that 

n-1 n-1 

n-1 

= :~:::>(1 _ p)i-1 + (1 _ p)n-1 

i=l 

= p [ 1 - (1 - p )n-1 ] + (1 - p r-1 
1 - (1 - p) 

= 1 _ (1 _ p )n-1 + (1 _ p )n-1 

=1 • 
Suppose that there are N distinct types of coupons and that each time one obtains 
a coupon, it is, independently of previous selections, equally likely to be any one of 
the N types. One random variable of interest is T, the number of coupons that need 
to be collected until one obtains a complete set of at least one of each type. Rather 
than derive P{ T = n} directly, let us start by considering the probability that T is 
greater than n. To do so, fix n and define the events A1,A2, ... ,AN as follows: Aj 
is the event that no type j coupon is contained among the first n coupons collected, 
j = 1, ... ,N. Hence, 

P{T > n} = P (0Aj) 
J=l 

= LP(Aj) - LLP(AjiAjz) + ... 
j h<h 

+ (-l)k+l LLL P(AhAh .. ·Ajk)· .. 
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Now, Aj will occur if each of then coupons collected is not of type j. Since each of the 
coupons will not be of type j with probability (N - 1)/N, we have, by the assumed 
independence of the types of successive coupons, 

Also, the event Ah Ah will occur if none of the first n coupons collected is of either 
type h or type h Thus, again using independence, we see that 

The same reasoning gives 

( N k)n P(A·A· ... A·)-11 12 lk - N 

and we see that for n > 0, 

P{T > n} = N ( N N 1 r ( ~) ( N; 2 r + ( ~) ( N; 3 r 
+ (-l)N ( N ~ 1) (~ r 

= E ( ~) (N; iy (-!)'+' (1.1) 

The probability that T equals n can now be obtained from the preceding formula by 
the use of 

P{T > n - 1} = P{T = n} + P{T > n} 

or, equivalently, 
P{T = n} = P{T > n - l} - P{T > n} 

Another random variable of interest is the number of distinct types of coupons 
that are contained in the first n selections-call this random variable Dn. To compute 
P{Dn = k}, let us start by fixing attention on a particular set of k distinct types, 
and let us then determine the probability that this set constitutes the set of distinct 
types obtained in the first n selections. Now, in order for this to be the situation, it is 
necessary and sufficient that of the first n coupons obtained, 

A: each is one of these k types 

B: each of these k types is represented 

Now, each coupon selected will be one of the k types with probability k/N, so the 
probability that A will be valid is (k/N)n. Also, given that a coupon is of one of the 
k types under consideration, it is easy to see that it is equally likely to be of any one 
of these k types. Hence, the conditional probability of B given that A occurs is the 
same as the probability that a set of n coupons, each equally likely to be any of k 
possible types, contains a complete set of all k types. But this is just the probability 
that the number needed to amass a complete set, when choosing among k types, is 
less than or equal ton and is thus obtainable from Equation (1.1) with k replacing 
N. Thus, we have 
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P(A) = (~r 

P(BjA) = 1 _ E ( ~) (k; ir (-l)i+l 

Finally, as there are ( ~ ) possible choices for the set of k types, we arrive at 

P{Dn = k} = ( ~) P(AB) 

~ ( ~) (;r [1 - E( ~) e ~ ir (-!)'+'] 
Remark Since one must collect at least N coupons to obtain a complete set, it 
follows that P{T > n} = 1 if n < N. Therefore, from Equation (1.1), we obtain the 
interesting combinatorial identity that for integers 1 s n < N c_ 

which can be written as 

~ ( ~) (N; ir (-l)i+l =O 

or, upon multiplying by (-l)NNn and lettingj = N - i, 

f ( ~ )rc-rJ-1 = o 
j=l J 

• 
For a random variable X, the function F defined by 

F(x) = P{X s x} -OO<X<OO 

is called the cumulative distribution function or, more simply, the distribution func
tion of X. Thus, the distribution function specifies, for all real values x, the probabil
ity that the random variable is less than or equal to x. 

Now, suppose that a s b. Then, because the event {X s a} is contained in the 
event {X s b}, it follows that F(a), the probability of the former, is less than or equal 
to F(b), the probability of the latter. In other words, F(x) is a nondecreasing function 
of x. Other general properties of the distribution function are given in Section 10. 

2 Discrete Random Variables 
A random variable that can take on at most a countable number of possible values is 
said to be discrete. For a discrete random variable X, we define the probability mass 
function p(a) of X by 

p(a) = P{X =a} 
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The probability mass function p(a) is positive for at most a countable number of 
values of a. That is, if X must assume one of the values x1, x2, . .. , then 

p(Xi) ~ 0 for i = 1,2, ... 

p(x) = 0 for all other values of x 

Since X must take on one of the values Xi, we have 

00 

LP(Xi) = 1 
i=l 

It is often instructive to present the probability mass function in a graphical 
format by plotting p(xi) on the y-axis against Xi on the x-axis. For instance, if the 
probability mass function of X is 

1 
p(O) = -

4 

1 
p(l) = 2 

1 
p(2) = -

4 

we can represent this function graphically as shown in Figure 1. Similarly, a graph 
of the probability mass function of the random variable representing the sum when 
two dice are rolled looks like Figure 2. 

p(x) 

6 
36 

5 
36 

4 
36 

3 
36 

2 
36 

I 
36 

0 2 3 4 

p(x) 

1 

I 
2 

I 
4 

0 

5 

x 
1 2 

Figure I 

x 
6 7 8 9 10 11 12 

Figure 2 



Example 
la 

Random Variables 

The probability mass function of a random variable X is given by p(i) = c>..i Ji!, 
i = 0, 1,2, ... , where 'A is some positive value. Find (a) P{X = O} and {b) P{X > 2}. 

00 

Solution Since L p(i) = 1, we have 
i=O 

00 • 

oo >..i 
c'""-=1 L., ., 

i=O l. 

which, because ex = L x' Ji!, implies that 
i=O 

ce" = 1 or c = e-J.. 
Hence, 

(a) P{X = O} = e-J..>..0JO! = e-J.. 

{b) P{X > 2} = 1 - P{X :s; 2} = 1 - P{X = O} - P{X = 1} 
- P{X =2} 

>..2e-J.. 
= 1 - e-J.. - >..e-J.. - --

2 

The cumulative distribution function F can be expressed in._ terms of p(a) by 

F(a) = L p(x) 
allxsa 

• 

If X is a discrete random variable whose possible values are x1, x2, x3, ... , where 
x1 < x2 < x3 < · · · , then the distribution function F of X is a step function. That 
is, the value of Fis constant in the intervals (Xi-1 ·Xi) and then takes a step (or jump) 
of size p(xi) at Xi· For instance, if X has a probability mass function given by 

1 1 1 1 
p(l) = 4 p(2) = 2 p(3) = 8 p(4) = 8 

then its cumulative distribution function is 

0 a< 1 
1 l:5a<2 4 

F(a) = 3 2:5a<3 4 
7 3:5a<4 g 

1 4 :s; a 

This function is depicted graphically in Figure 3. 

1 2 3 4 

Figure 3 
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Note that the size of the step at any of the values 1, 2, 3, and 4 is equal to the 
probability that X assumes that particular value. 

3 Expected Value 

Example 
3a 

One of the most important concepts in probability theory is that of the expectation 
of a random variable. If X is a discrete random variable having a probability mass 
function p(x), then the expectation, or the expected value, of X, denoted by E[X], is 
defined by 

E[X] = L xp(x) 
x:p(x)>O 

In words, the expected value of X is a weighted average of the possible values that 
X can take on, each value being weighted by the probability that X assumes it. For 
instance, on the one hand, if the probability mass function of X is given by 

1 
p(O) = Z = p(l) 

then 

E[X]=o(~) + 1(~)=~ 
is just the ordinary average of the two possible values, 0 and 1, that X can assume. 
On the other hand, if 

then 

1 
p(O) = 3 

2 
p(l) = -

3 

E[X]=O(~) + 1(~)=~ 
is a weighted average of the two possible values 0 and 1, where the value 1 is given 
twice as much weight as the value 0, since p(l) = 2p(O). 

Another motivation of the definition of expectation is provided by the frequency 
interpretation of probabilities. This interpretation (partially justified by the strong 
law of large numbers) assumes that if an infinite sequence of independent replica
tions of an experiment is performed, then, for any event E, the proportion of time 
that E occurs will be P(E). Now, consider a random variable X that must take on 
one of the values xi,xz, .. . Xn with respective probabilities p(x1),p(x2), ... ,p(xn), 
and think of X as representing our winnings in a single game of chance. That is, 
with probability p(xi), we shall win Xi units i = 1, 2, ... , n. By the frequency inter
pretation, if we play this game continually, then the proportion of time that we win 
Xi will be p(xi). Since this is true for all i, i = 1, 2, ... , n, it follows that our average 
winnings per game will be 

n 

L XiP(Xi) = E[X] 
i=l 

Find E[X], where Xis the outcome when we roll a fair die. 

Solution Since p(l) = p(2) = p(3) = p(4) = p(5) = p(6) = ~.we obtain 

• 
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We say that I is an indicator variable for the event A if 

Find E[I]. 

11 if A occurs 
1 = 0 if Ac occurs 

Solution Since p(l) = P(A),p(O) = 1 - P(A), we have 

E[I] = P(A) 

That is, the expected value of the indicator variable for the event A is equal to the 
probability that A occurs. • 

A contestant on a quiz show is presented with two questions, questions 1 and 2, 
which he is to attempt to answer in some order he chooses. If he decides to try 
question i first, then he will be allowed to go on to question j, j *- i, only if his answer 
to question i is correct. If his initial answer is incorrect, he is not allowed to answer 
the other question. The contestant is to receive Vi dollars if he answers question 
i correctly, i = 1, 2. For instance, he will receive Vi + V2 dollars if he answers 
both questions correctly. If the probability that he knows the answer to question i is 
Pi, i = 1, 2, which question should he attempt to answer first so as to maximize his 
expected winnings? Assume that the events Ei, i = 1, 2, that he knows the answer to 
question i are independent events. 

Solution On the one hand, if he attempts to answer question 1 first, then he will win 

0 with probability 1 - P1 
Vi with probability P1 (1 - P2) 
Vi + Vi with probability P1P2 

Hence, his expected winnings in this case will be 

On the other hand, if he attempts to answer question 2 first, his expected winnings 
will be 

Therefore, it is better to try question 1 first if 

or, equivalently, if 

For example, if he is 60 percent certain of answering question 1, worth $200, correctly 
and he is 80 percent certain of answering question 2, worth $100, correctly, then he 
should attempt to answer question 2 first because 

400 = (100)(.8) 
.2 

> (200)(.6) = 300 
.4 • 
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A school class of 120 students is driven in 3 buses to a symphonic performance. There 
are 36 students in one of the buses, 40 in another, and 44 in the third bus. When the 
buses arrive, one of the 120 students is randomly chosen. Let X denote the number 
of students on the bus of that randomly chosen student, and find E[X]. 

Solution Since the randomly chosen student is equally likely to be any of the 120 
students, it follows that 

36 40 44 
P{X = 36} = 120 P{X = 40} = 120 P{X = 44} = 120 

Hence, 

( 3) (1) (11) 1208 E[X] = 36 10 + 40 "3 + 44 30 = 3Q = 40.2667 

However, the average number of students on a bus is 120/3 = 40, showing that 
the expected number of students on the bus of a randomly chosen student is larger 
than the average number of students on a bus. This is a general phenomenon, and 
it occurs because the more students there are on a bus, the more likely it is that 
a randomly chosen student would have been on that bus. As a result, buses with 
many students are given more weight than those with fewer students. (See Self-Test 
Problem 4) • 

Remark The probability concept of expectation is analogous to the physical con
cept of the center of gravity of a distribution of mass. Consider a discrete random 
variable X having probability mass function p(Xi), i ;?; 1. If we now imagine a weight
less rod in which weights with mass p(Xi), i ;?; 1, are located at the points Xi, i ;?; 1 
(see Figure 4), then the point at which the rod would be in balance is known as the 
center of gravity. For those readers acquainted with elementary statics, it is now a 
simple matter to show that this point is at E[X]. t • 

• • • • -1 0 "1 2 

p(-1) = .10, p(O) = .25, p(l) = .30, p(2) = .35 

" = center of gravity = .9 

figure 4 

4 Expectation of a Function of a Random Variable 
Suppose that we are given a discrete random variable along with its probability mass 
function and that we want to compute the expected value of some function of X, say, 
g(X). How can we accomplish this? One way is as follows: Since g(X) is itself a dis
crete random variable, it has a probability mass function, which can be determined 
from the probability mass function of X. Once we have determined the probability 
mass function of g(X), we can compute E[g(X)] by using the definition of expected 
value. 

tTo prove this, we must show that the sum of the torques tending to turn the point around E[X] is equal to 0. 
That is, we must show that 0 = L;(x; - E[X])p(x;), which is immediate. 

i 



Example 
4a 

Proposition 
4.1 

Random Variables 

Let X denote a random variable that takes on any of the values -1, 0, and 1 with 
respective probabilities 

P{X = -1} = .2 P{X = O} = .5 P{X = 1} = .3 

Compute E[X2]. 

Solution Let Y = X 2• Then the probability mass function of Y is given by 

Hence, 

Note that 

P{Y = 1} = P{X = -1} + P{X = 1} = .5 

P{Y = O} = P{X = O} = .5 

E[X2] = E[Y] = 1(.5) + 0(.5) = .5 

.5 = E[X2] -::P (E[X])2 = .01 • 
Although the preceding procedure will always enable us to compute the expec

ted value of any function of X from a knowledge of the probability mass function 
of X, there is another way of thinking about E[g(X)]: Since g(X) will equal g(x) 
whenever Xis equal to x, it seems reasonable that E[g(X)] should just be a weighted 
average of the values g(x), with g(x) being weighted by the probability that Xis equal 
to x. That is, the following result is quite intuitive. 

If X is a discrete random variable that takes on one of the values Xi, i ;::: 1, with 
respective probabilities p(xi), then, for any real-valued function g, 

E[g(X)] = Lg(Xi)P(Xi) 
i 

Before proving this proposition, let us check that it is in accord with the results 
of Example 4a. Applying it to that example yields 

E{X2} = (-1)2 (.2) + 02 (.5) + 12(.3) 

= 1(.2 + .3) + 0(.5) 

=.5 

which is in agreement with the result given in Example 4a. 

Proof of Proposition 4.1 The proof of Proposition 4.1 proceeds, as in the preceding 
verification, by grouping together all the terms in L g(xi)P(Xi) having the same value 

i 
of g(xi). Specifically, suppose that Yj.j;::: 1, represent the different values of g(xi), i;::: 
1. Then, grouping all the g(xi) having the same value gives 

Lg(xi)P(Xi) = L L g(xi)P(Xi) 
i j i:g(x;)=Yi 

= L L YjP(Xi) 
j i:g(x;)=YJ 

= LYj L p(Xi) 
j i:g(x;)=Yj 

= LYjP{g(X) = Yj} 
j 

= E[g(X)] D 
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A product that is sold seasonally yields a net profit of b dollars for each unit sold and 
a net loss of l dollars for each unit left unsold when the season ends. The number 
of units of the product that are ordered at a specific department store during any 
season is a random variable having probability mass function p(i), i ~ 0. If the store 
must stock this product in advance, determine the number of units the store should 
stock so as to maximize its expected profit. 

Solution Let X denote the number of units ordered. Ifs units are stocked, then the 
profit-call it P(s)-can be expressed as 

P(s) = bX - (s - X)l ifX s s 

=Sb ifX > s 

Hence, the expected profit equals 

s 00 

E[P(s)] =~)bi - (s - i)l]p(i) + L sbp(i) 
i=O i=s+l 

s s [ s ] 
= (b + l) ~ ip(i) - sl ~p(i) + sb 1 - ~p(l) 

s s 

= (b + l) L ip(i) - (b + l)s LP(i) + sb 
i=O 

s 

= sb + (b + l) L(i - s)p(i) 
i=O 

i=O 

To determine the optimum value of s, let us investigate what happens to the profit 
when we increase s by 1 unit. By substitution, we see that the expected profit in this 
case is given by 

Therefore, 

s+l 

E[P(s + 1)] = b(s + 1) + (b + l) L(i - s - l)p(z) 

s 

= b(s + 1) + <b + t) L:(i - s - l)p(i) 
i=O 

s 

E[P(s + 1)] - E[P(s)] = b - (b + l) LP(i) 
i=O 

Thus, stockings + 1 units will be better than stocking s units whenever 

s b 
LP(i) < b + l 
i=O 

(4.1) 

Because the left-hand side of Equation (4.1) is increasing ins while the right-hand 
side is constant, the inequality will be satisfied for all values of s s s*, where s* is the 
largest value of s satisfying Equation ( 4.1 ). Since · 

E[P(O)] < · · · < E[P(s*)] < E[P(s* + 1)] > E[P(s* + 2)] > · · · 

it follows that stocking s* + 1 items will lead to a maximum expected profit. • 
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Utility 

Suppose that you must choose one of two possible actions, each of which can result 
in any of n consequences, denoted as C1, ... , Cn. Suppose that if the first action is 
chosen, then consequence Ci will result with probability Pi. i = 1, ... , n, whereas 
if the second action is chosen, then consequence Ci will result with probability qi, 

n n 
i = 1, ... , n, where I: Pi = I: qi = 1. The following approach can be used to deter-

i=l i=l 
mine which action to choose: Start by assigning numerical values to the different 
consequences. First, identify the least and the most desirable consequences-call 
them c and C, respectively; give consequence c the value 0 and give C the value 1. 
Now consider any of the other n - 2 consequences, say, Ci. To value this conse
quence, imagine that you are given the choice between either receiving Ci or taking 
part in a random experiment that either earns you consequence C with probabil
ity u or consequence c with probability 1 - u. Clearly, your choice will depend on 
the value of u. On the one hand, if u = 1, then the experiment is certain to result 
in consequence C, and since C is the most desirable consequence, you will prefer 
participating in the experiment to receiving Ci. On the other hand, if u = 0, then 
the experiment will result in the least desirable consequence-gamely, c-so in this 
case you will prefer the consequence Ci to participating in the experiment. Now, 
as u decreases from 1 to 0, it seems reasonable that your choice will at some point 
switch from participating in the experiment to the certain return of Ci, and at that 
critical switch point you will be indifferent between the two alternatives. Take that 
indifference probability u as the value of the consequence Ci. In other words, the 
value of Ci is that probability u such that you are indifferent between either receiv
ing the consequence Ci or taking part in an experiment that returns consequence C 
with probability u or consequence c with probability 1 - u. We call this indifference 
probability the utility of the consequence Ci, and we designate it as u(Ci). 

To determine which action is superior, we need to evaluate each one. Consider 
the first action, which results in consequence Ci with probability Pi. i = 1, ... , n. We 
can think of the result of this action as being determined by a two-stage experiment. 
In the first stage, one of the values 1, ... , n is chosen according to the probabilities 
p1, ... ,pn; if value i is chosen, you receive consequence Ci. However, since Ci is 
equivalent to obtaining consequence C with probability u( Ci) or consequence c with 
probability 1 - u(Ci). it follows that the result of the two-stage experiment is equiv
alent to an experiment in which either consequence C or consequence c is obtained, 
with C being obtained with probability 

n 

I:>iu(Ci) 
i=l 

Similarly, the result of choosing the second action is equivalent to taking part in an 
experiment in which either consequence C or consequence c is obtained, with C 
being obtained with probability 

n 

Lqiu(Ci) 
i=l 

Since C is preferable to c, it follows that the first action is preferable to the 
second action if 

n n 

LPiU(Ci) > _Lqiu(Ci) 
i=l i=l 
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In other words, the worth of an action can be measured by the expected value of the 
utility of its consequence, and the action with the largest expected utility is the most 
preferable. • 

A simple logical consequence of Proposition 4.1 is Corollary 4.1. 

If a and b are constants, then 

E[aX + b] = aE[X] + b 

Proof 

E[aX + b] = L (ax + b)p(x) 
x:p(x)>O 

= a L xp(x) + b L p(x) 
x:p(x)>O x:p(x)>O 

=aE[X] + b D 

The expected value of a random variable X, E[X], is also referred to as the mean 
or the first moment of X. The quantity E[X"], n ~ 1, is called the nth moment of X. 
By Proposition 4.1, we note that 

E[Xn] = L xnp(x) 
x:p(x)>O 

Given a random variable X along with its distribution function F, it would be 
extremely useful if we were able to summarize the essential properties of F by 
certain suitably defined measures. One such measure would be E[X], the expected 
value of X. However, although E[X] yields the weighted average of the possible 
values of X, it does not tell us anything about the variation, or spread, of these val
ues. For instance, although random variables W, Y, and Z having probability mass 
functions determined by 

W = 0 with probability 1 

{
-1 with probability i 

Y= 
+ 1 with probability ~ 

{
-100 with probability ~ 

Z= 
+ 100 with probability ~ 

all have the same expectation-namely, 0-there is a much greater spread in the 
possible values of Y than in those of W (which is a constant) and in the possible 
values of Z than in those of Y. 

Because we expect X to take on values around its mean E[X], it would appear 
that a reasonable way of measuring the possible variation of X would be to look 
at how far apart X would be from its mean, on the average. One possible way to 
measure this variation would be to consider the quantity E[IX - µ,I], whereµ, = 
E[X]. However, it turns out to be mathematically inconvenient to deal with this 
quantity, so a more tractable quantity is usually considered-namely, the expectation 
of the square of the difference between X and its mean. We thus have the following 
definition. 
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Definition 
If Xis a random variable with mean µ, then the variance of X, denoted by 
Var(X), is defined by 

Var(X) = E[(X - µ) 2] 

An alternative formula for Var(X) is derived as follows: 

That is, 

Var(X) = E[ (X - µ )2] 

= L:<x - µ}2p(x) 
x 

= L:<x2 - 2µx + µ 2}p(x) 
x 

= L:x2p(x) - 2µ L:xp(x) + µ 2 LP(x) 
x x x 

= E[X2] - 2µ2 + µ2 

= E[X2] - µ2 

I Var(X) = E[X2] - (E[X])2 I 
In words, the variance of Xis equal to the expected value of x2 minus the square 

of its expected value. In practice, this formula frequently offers the easiest way to 
compute Var(X). 

Calculate Var(X) if X represents the outcome when a fair die is rolled. 

Solution It was shown in Example 3a that E[X] = i· Also, 

E[X2] = 12 (~) + 22 (~) + 32 (~) + 42 (~) + 52 (~) + 62 (~) 

= (~) (91) 

Hence, Var(X) = 91 - (~)2 = 35 
6 2 12 

A useful identity is that for any constants a and b, 

Var(aX + b) = a2Var(X) 

• 

To prove this equality, letµ= E[X] and note from Corollary 4.1 that E[aX + b] = 
aµ + b. Therefore, 

Var(aX + b) = E[(aX + b - aµ - b)2] 

= E[a2(X - µ)2] 

= a2E[(X - µ) 2] 

= a2Var(X) 

Remarks (a) Analogous to the means being the center of gravity of a distribution 
of mass, the variance represents, in the terminology of mechanics, the moment of 
inertia. 
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(b) The square root of the Var(X) is called the standard deviation of X, and we 
denote it by SD(X). That is, 

SD(X) = Jvar(X) 

Discrete random variables are often classified according to their probability 
mass functions. In the next few sections, we consider some of the more common 
types. 

6 The Bernoulli and Binomial Random Variables 
Suppose that a trial, or an experiment, whose outcome can be classified as either a 
success or a failure is performed. If we let X = 1 when the outcome is a success and 
X = 0 when it is a failure, then the probability mass function of X is given by 

p(O) = P{X = O} = 1 - p 

p(l) = P{X = 1} = p 

where p, 0 s p s 1, is the probability that the trial is a success. 

(6.1) 

A random variable Xis said to be a Bernoulli random variable (after the Swiss 
mathematician James Bernoulli) if its probability mass function is given by Equa
tions (6.1) for some p E (0, 1). 

Suppose now that n independent trials, each of which results in a success with 
probability p or in a failure with probability 1 - p, are to be performed. If X repre
sents the number of successes that occur in then trials, then Xis said to be a binomial 
random variable with parameters (n, p ). Thus, a Bernoulli random variable is just a 
binomial random variable with parameters (1,p). 

The probability mass function of a binomial random variable having parameters 
(n, p) is given by 

i = 0, 1, ... ,n (6.2) 

The validity of Equation (6.2) may be verified by first noting that the probability of 
any particular sequence of n outcomes containing i successes and n - i failures is, by 
the assumed independence of trials, pi(l - p)n-i. Equation (6.2) then follows, since 

there are ( 7 ) different sequences of the n outcomes leading to i successes and 

n - i failures. This perhaps can most easily be seen by noting that there are ( 7 ) 
different choices of the i trials that result in successes. For instance, if n = 4, i = 2, 

then there are ( ~ ) = 6 ways in which the four trials can result in two successes, 

namely, any of the outcomes (s, s,f,f), (s,f, s,f), (s,f,f, s), (f, s, s,f), (f, s,f, s), and 
(f,f, s, s), where the outcome (s, s,f,f) means, for instance, that the first t~o trials 
are successes and the last two failures. Since each of these outcomes has probability 
p 2 (1 - p)2 of occurring, the desired probability of two successes in the four trials 

is ( ~ )p2(1 - p)2• 



Example 
6a 

Example 
6b 

Example 
6c 

Random Variables 

Note that, by the binomial theorem, the probabilities sum to 1; that is, 

t,p(i) = ~ ( 7 )pi{l - p)n-i = [p + (1 - P>r = 1 

Five fair coins are flipped. If the outcomes are assumed independent, find the prob
ability mass function of the number of heads obtained. 

Solution If we let X equal the number of heads (successes) that appear, then X 

is a binomial random variable with parameters ( n = 5, p = n. Hence, by Equa
tion (6.2), 

• 
It is known that screws produced by a certain company will be defective with prob
ability .01, independently of one another. The company sells the screws in packages 
of 10 and offers a money-back guarantee that at most 1 of the 10 screws is defective. 
What proportion of packages sold must the company replace? 
Solution If X is the nwnber of defective screws in a package, then X is a binomial 
random variable with parameters (10, .01). Hence, the probability that a package 
will have to be replaced is 

1 - P{X = 0} - P{X = 1} = 1 - (lg) (.01)0(.99)10 - ( 1
1°) (.01)1(.99)9 

~ .004 

Thus, only .4 percent of the packages will have to be replaced. • 
The following gambling game, known as the wheel of fortune (or chuck-a-luck), is 
quite popular at many carnivals and gambling casinos: A player bets on one of the 
numbers 1 through 6. Three dice are then rolled, and if the number bet by the player 
appears i times, i = 1, 2, 3, then the player wins i units; if the number bet by the player 
does not appear on any of the dice, then the player loses 1 unit. Is this game fair to 
the player? (Actually, the game is played by spinning a wheel that comes to rest on 
a slot labeled by three of the numbers 1 through 6, but this variant is mathematically 
equivalent to the dice version.) 
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Solution If we assume that the dice are fair and act independently of one another, 
then the number of times that the number bet appears is a binomial random variable 

with parameters ( 3, i). Hence, letting X denote the player's winnings in the game, 
we have 

P{X = -1} = ( ~) (~)° (~r 125 
216 

P{X = 1} = ( i) (~Y (~)2 75 
216 

P{X = 2} = (;) (~)2 (~Y 15 
216 

P{X = 3} = (;) (~r (~)° 1 
= 216 

In order to determine whether or not this is a fair game for the player, let us 
calculate E[X]. From the preceding probabilities, we obtain 

[X] = -125 + 75 + 30 + 3 
E 216 

-17 
216 

Hence, in the long run, the player will lose 17 units per every 216 games he plays. • 

In the next example, we consider the simplest form of the theory of inheritance 
as developed by Gregor Mendel (1822-1884). 

Suppose that a particular trait (such as eye color or left-handedness) of a person is 
classified on the basis of one pair of genes, and suppose also that d represents a domi
nant gene and r a recessive gene. Thus, a person with dd genes is purely dominant, 
one with rr is purely recessive, and one with rd is hybrid. The purely dominant and 
the hybrid individuals are alike in appearance. Children receive 1 gene from each 
parent. If, with respect to a particular trait, 2 hybrid parents have a total of 4 children, 
what is the probability that 3 of the 4 children have the outward appearance of the 
dominant gene? 

Pure yellow Pure green Hybrid Hybrid 

Yellow hybrid Pure yellow Hybrid Hybrid -Pure green 

(a) (b) 

Figure S (a) Crossing pure yellow seeds with pure green seeds; (b) Crossing hybrid 
first-generation seeds. 
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The preceding Figure 5a and b shows what can happen when hybrid yellow (domi
nant) and green (recessive) seeds are crossed. 

Solution If we assume that each child is equally likely to inherit either of 2 genes 
from each parent, the probabilities that the child of 2 hybrid parents will have dd, 
rr, and rd pairs of genes are, respectively, !, !, and !·Hence, since an offspring will 
have the outward appearance of the dominant gene if its gene pair is either dd or rd, 
it follows that the number of such children is binomially distributed with parameters 
( 4, i). Thus, the desired probability is 

• 
Consider a jury trial in which it takes 8 of the 12 jurors to convict the defendant; 
that is, in order for the defendant to be convicted, at least 8 of the jurors must vote 
him guilty. If we assume that jurors act independently and that whether or not the 
defendant is guilty, each makes the right decision with probability (), what is the 
probability that the jury renders a correct decision? 

Solution The problem, as stated, is incapable of solution, for there is not yet enough 
information. For instance, if the defendant is innocent, the probability of the jury 
rendering a correct decision is 

whereas, if he is guilty, the probability of a correct decision is 

Therefore, if a represents the probability that the defendant is guilty, then, by condi
tioning on whether or not he is guilty, we obtain the probability that the jury renders 
a correct decision: 

A communication system consists of n components, each of which will, indepen
dently, function with probability p. The total system will be able to operate effec
tively if at least one-half of its components function. 

(a) For what values of pis a 5-component system more likely to operate effectively 
than a 3-component system? 

(b) In general, when is a (2k + 1)-component system better than a (2k - 1)-
component system? 

Solution (a) Because the number of functioning components is a binomial random 
variable with parameters (n, p ), it follows that the probability that a 5-component 
system will be effective is 

(;) p3(l _ p)2 + ( ~) p4(1 _ p) + PS 
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whereas the corresponding probability for a 3-component system is 

( ~) p2(1 - p) + p3 

Hence, the 5-component system is better if 

10p3(1 - p)2 + 5p4(1 - p) + PS > 3p2(1 - p) + p3 

which reduces to 

or 

3(p - 1)2(2p - 1) > 0 

1 
p > 2 

(b) In general, a system with 2k + 1 components will be better than one with 
2k - 1 components if (and only if) p > ~. To prove this, consider a system of 2k + 1 
components and let X denote the number of the first 2k - 1 that function. Then 

P2k+l (effective) = P{X ~ k + 1} + P{X = k}(l - (1 - p)2) 

+ P{X = k - l}p2 

which follows because the (2k + 1)-component system will be effective if either 

(i) x ~ k + 1; 
(ii) X = k and at least one of the remaining 2 components function; or 

(iii) X = k - 1 and both of the next 2 components function. 

Since 

P2k-1(effective) = P{X ::=::: k} 

= P{X = k} + P{X :::::: k + 1} 

we obtain 

P2k+1 (effective) - Pzk-1 (effective) 

= P{X = k - l}p2 - (1 - p)2P{X = k} 

= ( 2; ~ 11) pk-l(l - p)kp2 - (1 - p)2 ( 2k k 1) pk(l - p)k-l 

= ( 2k k 1) pk(l - Pl[P - (1 - p)] since ( 2; ~ i1) = ( 2k k 1) 

6.1 Properties of Binomial Random Variables 

• 

We will now examine the properties of a binomial random variable with parameters 
n and p. To begin, let us compute its expected value and variance. To begin, note that 

E[Xk] = t l ( 7) pi(l - p)n-i 
t=O 

= t ik ( 7 ) pi (1 - p )n-i 
t=l 
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Using the identity 

·(n) (n-1) ' i =n i-1 

gives 

E[Xk] = np t ik-1 ( 7 ~ i ) pi-1 (1 - pr-i 
1=1 

= np _'2); + 1/-1 n -:- pi(l - p)n-l-j j = i - 1 
n-1 ( 1 ) by letting 

j=O ] 

= npE[(Y + l)k-l] 

where Y is a binomial random variable with parameters n - 1, p. Setting k = 1 in 
the preceding equation yields 

E[X] = np 

That is, the expected number of successes that occur in n independent trials when 
each is a success with probability p is equal to np. Setting k -= 2 in the preced
ing equation and using the preceding formula for the expected value of a binomial 
random variable yields 

E[X2] = npE[Y + 1] 

= np[(n - l)p + 1] 

Since E[X] = np, we obtain 

Var(X) = E[X2] - (E[X])2 

= np[(n - l)p + 1] - (np)2 

= np(l - p) 

Summing up, we have shown the following: 
If Xis a binomial random variable with parameters n and p, then 

E[X] = np 

Var(X) = np(l - p) 

The following proposition details how the binomial probability mass function 
first increases and then decreases. 

If Xis a binomial random variable with parameters (n, p ), where 0 < p < 1, then 
ask goes from 0 to n,P{X = k} first increases monotonically and then decreases 
monotonically, reaching its largest value when k is the largest integer less than or 
equal to (n + l)p. 

Proof We prove the proposition by considering P{X = k}/ P{X = k - 1} and deter
mining for what values of kit is greater or less than 1. Now, 

n! k(l )n-k 
P{X == k} (n - k)!k!p - p 

=~~~----,....--'-~~~~~~~~-

P{X = k - 1} n! k-1 n-k+1 
(n - k + l)!(k - l)!p (l - p) 

(n - k + l)p 
= k(l - p) 
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1024 x p(k) 

252 -

k 
0 1 2 3 4 5 6 7 8 9 10 

Figure 6 Graph of p(k) = (1,?) ( ! ) 10
• 

Hence, P{X = k} ::::: P{X = k - 1} if and only if 

(n - k + l)p ::::: k(l - p) 

or, equivalently, if and only if 
k ~ (n + l)p 

and the proposition is proved. 0 

As an illustration of Proposition 6.1, consider Figure 6, the graph of the proba
bility mass function of a binomial random variable with parameters (10, ~). 

In a U.S. presidential election, the candidate who gains the maximum number of 
votes in a state is awarded the total number of electoral college votes allocated to 
that state. The number of electoral college votes of a given state is roughly propor
tional to the population of that state-that is, a state with population n has roughly 
nc electoral votes. (Actually, it is closer to nc + 2, as a state is given an electoral 
vote for each member it has in the House of Representatives, with the number of 
such representatives being roughly proportional to the population of the state, and 
one electoral college vote for each of its two senators.) Let us determine the average 
power of a citizen in a state of size n in a close presidential election, where, by aver
age power in a close election, we mean that a voter in a state of size n = 2k + 1 will be 
decisive if the other n - 1 voters split their votes evenly between the two candidates. 
(We are assuming here that n is odd, but the case where n is even is quite similar.) 
Because the election is close, we shall suppose that each of the other n - 1 = 2k 
voters acts independently and is equally likely to vote for either candidate. Hence, 
the probability that a voter in a state of size n = 2k + 1 will make a difference to 
the outcome is the same as the probability that 2k tosses of a fair coin land heads 
and tails an equal number of times. That is, 

P{voter in state of size 2k + 1 makes a difference} 

(2k)! 
= 

k!k!22k 
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To approximate the preceding equality, we make use of Stirling's approximation, 
which says that fork large, 

where we say that ak ,..., bk when the ratio ak/bk approaches 1 ask approaches oo. 
Hence, it follows that 

P{voter in state of size 2k + 1 makes a difference} 

(2k)2k+l/2e-2k../Iir 1 
,..., k2k+le-2k(2;;rr)22k = ../kif 

Because such a voter (if he or she makes a difference) will affect nc electoral votes, 
the expected number of electoral votes a voter in a state of size n will affect-or the 
voter's average power-is given by 

average power= ncP{makes a difference} 
nc 

,..., Jnn/2 

= c../2n/:;rr 
Thus, the average power of a voter in a state of size n is proportional to the square 
root of n, showing that in presidential elections, voters in large states have more 
power than do those in smaller states. • 

6.2 Computing the Binomial Distribution Function 

Suppose that X is binomial with parameters (n, p ). The key to computing its distri
bution function 

P{X :5 i} = t ( ~ )pk(l - p)n-k i = 0,1, .. .,n 
k=O 

is to utilize the following relationship between P{X = k + 1} and P{X = k}, which 
was established in the proof of Proposition 6.1: 

P{X = k + 1} = l ~ p ~ ~ ~ P{X = k} (6.3) 

Let X be a binomial random variable with parameters n = 6, p = .4. Then, starting 
with P{X = O} = (.6)6 and recursively employing Equation (6.3), we obtain 

P{X = 0} = (.6)6 ~ .0467 

46 
P{X = 1} = "6iP{X = O} ~ .1866 

45 
P{X = 2} = "6zP{X = 1} ~ .3110 

44 
P{X = 3} = 63P{X = 2} ~ .2765 

43 
P{X = 4} = 64P{X = 3} ~ .1382 

42 
P{X = 5} = °6SP{X = 4} ~ .0369 

41 
P{X = 6} = "6"6P{X = 5} ~ .0041 • 
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A computer program that utilizes the recursion (6.3) to compute the binomial 
distribution function is easily written. To compute P{X :::; i}, the program should 
first compute P{X = i} and then use the recursion to successively compute P{X = 
i - 1}, P{X = i - 2}, and so on. 

Historical note 
Independent trials having a common probability of success p were first stud
ied by the Swiss mathematician Jacques Bernoulli (1654-1705). In his book Ars 
Conjectandi (The Art of Conjecturing), published by his nephew Nicholas eight 
years after his death in 1713, Bernoulli showed that if the number of such trials 
were large, then the proportion of them that were successes would be close top 
with a probability near 1. 

Jacques Bernoulli was from the first generation of the most famous mathe
matical family of all time. Altogether, there were between 8 and 12 Bernoullis, 
spread over three generations, who made fundamental contributions to proba
bility, statistics, and mathematics. One difficulty in knowing their exact number 
is the fact that several had the same name. (For example, two of the sons of 
Jacques's brother Jean were named Jacques and Jean.) Another difficulty is that 
several of the Bernoullis were known by different names in different places. 
Our Jacques (sometimes written Jaques) was, for instance, also known as Jakob 
(sometimes written Jacob) and as James Bernoulli. But whatever their num
ber, their influence and output were prodigious. Like the Bachs of music, the 
Bernoullis of mathematics were a family for the ages! 

If X is a binomial random variable with parameters n = 100 and p = .75, find 
P{X = 70} and P{X :::; 70}. 

Solution A binomial calculator can be used to obtain the following solutions: 

• Binomial Distribution aa 
Enter Value For pl. 75 Start 

Enter Value For nl100 

Enter Value For ii 70 Quit 

Probability (Number of Successes i) .04575381 

Probability (Number of Successes < = i) = .14954105 

Figure 7 

7 The Poisson Random Variable 
A random variable X that takes on one of the values 0, 1, 2, ... is said to be a Poisson 
random variable with parameter ).. if, for some ).. > 0, 

;..i 
p(i) = P{X = i} = e->.-=-j' i = 0, 1,2, . . . 

l. 
(7.1) 
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Equation (7.1) defines a probability mass function, since 

00 00 >...i 
LP(i) = e-'J.. L 1 = e-'J..e'J.. = 1 
i=O i=O l. 

The Poisson probability distribution was introduced by Simeon Denis Poisson in a 
book he wrote regarding the application of probability theory to lawsuits, criminal 
trials, and the like. This book, published in 1837, was entitled Recherches sur la prob
abilite des jugements en matiere criminelle et en matiere civile (Investigations into the 
Probability of Verdicts in Criminal and Civil Matters). 

The Poisson random variable has a tremendous range of applications in diverse 
areas because it may be used as an approximation for a binomial random variable 
with parameters (n, p) when n is large and pis small enough so that np is of moderate 
size. To see this, suppose that Xis a binomial random variable with parameters (n, p ), 
and let J.. = np. Then 

n' . P{X = i} = . p'(l - p)n-i 
(n - i)!i! 

n! (A)i ( J..)n-i 
= (n - i) !i! ;; 1 - ;; 

n(n - 1) · · · (n - i + 1) J..i (1 - J../n)n 
= ni i! (1 - J../n)i 

Now, for n large and J.. moderate, 

n(n - 1) · · · (n - i + 1) 
ni 

Hence, for n large and J.. moderate, 

~1 

In other words, if n independent trials, each of which results in a success with 
probability p, are performed, then when n is large and pis small enough to make 
np moderate, the number of successes occurring is approximately a Poisson random , 
variable with parameter J.. = np. This value J.. (which will later be shown to equal the 
expected number of successes) will usually be determined empirically. 

Some examples of random variables that generally obey the Poisson probability 
law (that is, they obey Equation (7.1)) are as follows: 

1. The number of misprints on a page (or a group of pages) of a book 
2. The number of people in a community who survive to age 100 
3. The number of wrong telephone numbers that are dialed in a day 
4. The number of packages of dog biscuits sold in a particular store each day 
5. The number of customers entering a post office on a given day 
6. The number of vacancies occurring during a year in the federal judicial system 
7. The number of a-particles discharged in a fixed period of time from some 

radioactive material 

Each of the preceding and numerous other random variables are approximately 
Poisson for the same reason-namely, because of the Poisson approximation to the 
binomial. For instance, we can suppose that there is a small probability p that each 
letter typed on a page will be misprinted. Hence, the number of misprints on a page 
will be approximately Poisson with J.. = np, where n is the number of letters on a 
page. Similarly, we can suppose that each person in a community has some small 
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probability of reaching age 100. Also, each person entering a store may be thought 
of as having some small probability of buying a package of dog biscuits, and so on. 

Suppose that the number of typographical errors on a single page of this book has a 
Poisson distribution with parameter A.= ~·Calculate the probability that there is at 
least one error on this page. 

Solution Letting X denote the number of errors on this page, we have 

P{X ::=:: l} = 1 - P{X = O} = 1 - e-112 ~ .393 • 
Suppose that the probability that an item produced by a certain machine will be 
defective is .1. Find the probability that a sample of 10 items will contain at most 1 
defective item. 

Solution The desired probability is ( 1g) (.1)0 (.9)10 + ( 11°) (.1)1(.9)9 = .7361, 

whereas the Poisson approximation yields the value e-1 + e-1 ~ .7358. • 

Consider an experiment that consists of counting the number of a particles given 
off in a 1-second interval by 1 gram of radioactive material. If we know from past 
experience that on the average, 3.2 such a particles are given off, what is a good 
approximation to the probability that no more than 2 a particles will appear? 

Solution If we think of the gram of radioactive material as consisting of a large 
number n of atoms, each of which has probability of 3.2/n of disintegrating and send
ing off an a particle during the second considered, then we see that to a very close 
approximation, the number of a particles given off will be a Poisson random variable 
with parameter A. = 3.2. Hence, the desired probability is 

(3.2)2 
P{X ::5 2} = e-3·2 + 3.2e-3·2 + --e-3·2 

2 
~ .3799 • 

Compute the expected value and variance of the Poisson random variable with 
parameter A.; this random variable approximates a binomial random variable with 
parameters n and p when n is large, p is small, and A. = np. Since such a binomial 
random variable has expected value np =A. and variance np(l - p) = A.(1 - p) ~A. 
(since p is small), it would seem that both the expected value and the variance of a 
Poisson random variable would equal its parameter A.. We now verify this result: 

E[X] = t ie~~A.i 
i=O l. 

oo e-J...A.i-1 

=A.~ (i - 1)! 
t=l 

-'J...Loo Aj =A.e -., 
j=O ]. 

by letting 
j = i - 1 

=A 
00 ).) 

since L 1 = e'J... 
. 0 l· ]= 
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Thus, the expected value of a Poisson random variable X is indeed equal to its 
parameter >... To determine its variance, we first compute E[X2]: 

E[X2] = t i2e~AJ..i 
i=O l. 

oo ie-).)..i-1 

=}.. ~ (i - 1)! 
!=1 

= >.. t (j + l)e-AJ..i by letting 
j=O j! j = i - 1 

[ 

00 je-A').} 00 e-A').}] 
=>.. L:-.-, + L:-.-, 

j=O 1· j=O 1· 

= }..(}.. + 1) 

where the final equality follows because the first sum is the expected value of a 
Poisson random variable with parameter >.. and the second is the sum of the proba
bilities of this random variable. Therefore, since we have shown that E[X] = >..,we 
obtain 

Var(X) = E[X2] - (E[X])2 

=>.. 

Hence, the expected value and variance of a Poisson random variable are both 
equal to its parameter >... 

We have shown that the Poisson distribution with parameter np is a very good 
approximation to the distribution of the number of successes inn independent trials 
when each trial has probability p of being a success, provided that n is large and p 
small. In fact, it remains a good approximation even when the trials are not inde
pendent, provided that their dependence is weak. For instance, consider a matching 
problem in which n men randomly select hats from a set consisting of one hat from 
each person. From the point of view of the number of men who select their own 
hat, we may regard the random selection as the result of n trials where we say that 
trial i is a success if person i selects his own hat, i = 1, ... , n. Defining the events 
Ei, i = 1, ... , n, by 

Ei = {trial i is a success} 

it is easy to see that 

1 1 
P{Ei} = - and P{EilEj} = --, j ::F i 

n n - 1 

Thus, we see that although the events Ei, i = 1, ... , n are not independent, their 
dependence, for large n, appears to be weak. Because of this, it seems reasonable to 
expect that the number of successes will approximately have a Poisson distribution 
with parameter n x 1/n = 1. 

For a second illustration of the strength of the Poisson approximation when the 
trials are weakly dependent, let us consider an example, suppose that each of n peo
ple is equally likely to have any of the 365 days of the year as his or her birthday, 
and the problem is to determine the probability that a set of n independent people 
all have different birthdays. 
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We can approximate the probability by using the Poisson approximation as fol

lows: Imagine that we have a trial for each of the ( ~ ) pairs of individuals i and 

j, i #:- j, and say that trial i, j is a success if persons i and j have the same birthday. 

If we let Ei; denote the event that trial i, j is a success, then, whereas the ( ~ ) 
events Ei;.1 :s; i < j :s; n, are not independent (see Theoretical Exercise 21), their 
dependence appears to be rather weak. (Indeed, these events are even pairwise 
independent, in that any 2 of the events Ei; and Ek! are independent-again, see 
Theoretical Exercise 21). Since P(Ei;) = 1/365, it is reasonable to suppose that the 
number of successes should approximately have a Poisson distribution with mean 

( ~) /365 = n(n - 1)/730. Therefore, 

P{no 2 people have the same birthday}= P{O successes} 

{ -n(n - 1)} 
~exp 730 

To determine the smallest integer n for which this probability is less than ~, note that 

{ -n(n - 1) } < ~ 
exp 730 - 2 

is equivalent to 

{ n(n - 1)} 
exp 730 2! 2 

Taking logarithms of both sides, we obtain 

n(n - 1) 2! 730 log 2 

~ 505.997 

which yields the solution n = 23. 
Suppose now that we wanted the probability that among the n people, no 3 of 

them have their birthday on the same day. Whereas this now becomes a difficult 
combinatorial problem, it is a simple matter to obtain a good approximation. To 

begin, imagine that we have a trial for each of the ( ~ ) triplets i, j, k, where 1 :s; i < 

j < k :s; n, and call the i, j, k trial a success if persons i, j, and k all have their birthday 
on the same day. As before, we can then conclude that the number of successes is 
approximately a Poisson random variable with parameter 

Hence, 

( ~ ) P{i,j, k have the same birthday} = ( ~ ) ( 3~5 ) 2 

n(n - l)(n - 2) 
= 

6 x (365)2 

{ -n(n - l)(n - 2)} 
P{no 3 have the same birthday} ~ exp 799350 
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This probability will be less than ! when n is such that 

n(n - l)(n - 2) ;::: 799350log2 ~ 554067.1 

which is equivalent ton;::: 84. Thus, the approximate probability that at least 3 people 
in a group of size 84 or larger will have the same birthday exceeds !· 

For the number of events to occur to approximately have a Poisson distribution, 
it is not essential that all the events have the same probability of occurrence, but 
only that all of these probabilities be small. The following is referred to as the Pois
son paradigm. 

Poisson Paradigm. Consider n events, with Pi equal to the probability that 
event i occurs, i = 1, ... , n. If all the Pi are "small" and the trials are either inde
pendent or at most "weakly dependent," then the number of these events that occur 
approximately has a Poisson distribution with mean L:?=l Pi· 

Our next example not only makes use of the Poisson paradigm, but also illus
trates a variety of the techniques we have studied so far. 

Length of the longest run 

A coin is flipped n times. Assuming that the flips are independent, with each one 
coming up heads with probability p, what is the probability that there is a string of k 
consecutive heads? 

Solution We will first use the Poisson paradigm to approximate this probability. 
Now,iffori= l,. .. ,n - k + 1,weletHidenotetheeventthatflipsi,i + l, .. .,i + 
k - 1 all land on heads, then the desired probability is that at least one of the events 
Hi occur. Because Hi is the event that starting with flip i, the next k flips all land 
on heads, it follows that P(Hi) = pk. Thus, when pk is small, we might think that 
the number of the Hi that occur should have an approximate Poisson distribution. 
However, such is not the case, because, although the events all have small proba
bilities, some of their dependencies are too great for the Poisson distribution to be 
a good approximation. For instance, because the conditional probability that flips 
2, ... , k + 1 are all heads given that flips 1, ... , k are all heads is equal to the proba
bility that flip k + 1 is a head, it follows that 

which is far greater than the unconditional probability of H2. 
The trick that enables us to use a Poisson approximation is to note that there 

will be a string of k consecutive heads either if there is such a string that is imme
diately followed by a tail or if the final k flips all land on heads. Consequently, for 
i = 1, ... , n - k, let Ei be the event that flips i, ... , i + k - 1 are all heads and flip 
i + k is a tail; also, let En-k+l be the event that flips n - k + 1, ... ,n are all heads. 
Note that 

P(Ei) =pk(l - p), i:::;; n - k 

P(En-k+l) =pk 

Thus, when pk is small, each of the events Ei has a small probability of occurring. 
Moreover, for i * j, if the events Ei and Ej refer to non overlapping sequences of flips, 
then P(EilEj) = P(Ei); if they refer to overlapping sequences, then P(EilEj) = 0. 
Hence, in both cases, the conditional probabilities are close to the unconditional 

151 



152 

Random Variables 

ones, indicating that N, the number of the events Ei that occur, should have an 
approximate Poisson distribution with mean 

n-k+l 
E[N] = L P(Ei) = (n - k)pk(l - p) +pk 

i=l 

Because there will not be a run of k heads if (and only if) N = 0, thus the preceding 
gives 

P(no head strings of length k) = P(N = 0) RJ exp{-(n - k)pk(l - p) - pk} 

If we let Ln denote the largest number of consecutive heads in the n flips, then, 
because Ln will be less than k if (and only if) there are no head strings of length k, 
the preceding equation can be written as 

P{Ln < k} RJ exp{- (n - k)pk(l - p) - pk} 

Now, let us suppose that the coin being flipped is fair; that is, suppose that p = 1/2. 
Then the preceding gives 

{ n - k + 2} { n } P{Ln < k} RJ exp - 2k+l RJ exp - 2k+1 

k-2 
where the final approximation supposes that eir+I RJ 1 (that is, that ;1~1 RJ 0). Let 
j = log2 n, and assume that j is an integer. For k = j + i, 

n n 1 
2k+1 = :v2;+1 = 2;+1 

Consequently, 
P{Ln < j + i} RJ exp{-(l/2)i+l} 

which implies that 

P{Ln = j + i} = P{Ln < j + i + 1} - P{Ln < j + i} 

RJ exp{-(l/2)i+2} - exp{-(l/2)i+l} 

For instance, 

P{Ln < j - 3} RJ e-4 RJ .0183 

P{Ln = j - 3} RJ e-2 - e-4 RJ .1170 

P{Ln = j - 2} RJ e-1 - e-2 RJ .2325 

P{Ln = j - 1} RJ e-112 - e-1 RJ .2387 

P{Ln = j} RJ e-l/4 - e-112 RJ .1723 

P{Ln = j + 1} RJ e-118 - e-114 RJ .1037 

P{Ln = j + 2} RJ e-1116 - e-118 RJ .0569 

P{Ln = j + 3} RJ e-1132 - e-1116 RJ .0298 

P{Ln ~ j + 4} RJ 1 - e-1132 RJ .0308 

Thus, we observe the rather interesting fact that no matter how large n is, the length 
of the longest run of heads in a sequence of n flips of a fair coin will be within 2 of 
log2(n) - 1 with a probability approximately equal to .86. 
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We now derive an exact expression for the probability that there is a string of 
k consecutive heads when a coin that lands on heads with probability p is flipped 
n times. With the events Ei, i = 1, ... , n - k + 1, as defined earlier, and with Ln 
denoting, as before, the length of the longest run of heads, 

P(Ln 2: k) = P(there is a string of k consecutive heads) = P(u7;:1k+l Ei) 

The inclusion-exclusion identity for the probability of a union can be written as 

n-k+l 
P(u7;:1k+1Ei) = L (-1t+1 L P(Eit .. ·Ei,) 

r=l it <··-<ir 

Let Si denote the set of flip numbers to which the event Ei refers. (So, for instance, 
S1 = {1, ... ,k + 1}.) Now, consider one of the r-way intersection probabilities that 
does not include the event En-k+l· That is, consider P(Eit · · · Ei,) where ii < · · · < 
ir < n - k + 1. On the one hand, if there is any overlap in the sets Sit, . .. , Si, 
then this probability is 0. On the other hand, if there is no overlap, then the events 
Eit, ... , Ei, are independent. Therefore, 

if there is any overlap in Sit, ... , Si, 
if there is no overlap 

We must now determine the number of different choices of ii < · · · < ir < n - k + 1 
for which there is no overlap in the sets Sit, ... , Si,· To do so, note first that each 
of the Sij• j = 1, ... , r, refer to k + 1 flips, so, without any overlap, they together 
refer to r(k + 1) flips. Now consider any permutation of r identical letters a and 
of n - r(k + 1) identical letters b. Interpret the number of b's before the first a 
as the number of flips before Sit, the number of b's between the first and second 
a as the number of flips between Sit and Si2 , and so on, with the number of b's 
after the final a representing the number of flips after Si,· Because there are e-;_rk) 
permutations of r letters a and of n - r(k + 1) letters b, with every such permuta
tion corresponding (in a one-to-one fashion) to a different nonoverlapping choice, it 
follows that 

'"' (n - rk) rk 1 r L- P(Eit ... £i,) = r p ( - p) 
it <···<ir<n-k+l 

We must now consider r-way intersection probabilities of the form 

where ii < · · · < ir-1 < n - k + 1. Now, this probability will equal 0 if there 
is any overlap in Sit, ... , Si,_t, Sn-k; if there is no overlap, then the events of the 
intersection will be independent, so 

By a similar argument as before, the number of nonoverlapping sets Sit, ... , Si,_t, 
Sn-k will equal the number of permutations of r - 1 letters a (one for each of the 
sets Sil" .. ,Si,_t) and of n - (r - l)(k + 1) - k = n - rk - (r - 1) letters b (one 
for each of the trials that are not part of any of Sit, ... , Si,_t, Sn-k+1). Since there are 
(~~~permutations of r - 1 letters a and of n - rk - .(r - 1) letters b, we have 
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'"' (n - rk) kr 1 r 1 . .~ P(Ei1 • • • Ei,_1 En-k+i) = r _ l p ( - p) -
11 < ... <lr-1 <n-k+l 

Putting it all together yields the exact expression, namely, 

where we utilize the convention that (j) = 0 if m < j. 
From a computational point of view, a more efficient method for computing the 

desired probability than the use of the preceding identity is to derive a set of recur
sive equations. To do so, let An be the event that there is a string of k consecutive 
heads in a sequence of n flips of a fair coin, and let Pn = P(An). We will derive a 
set of recursive equations for P n by conditioning on when the first tail appears. For 
j = 1, ... , k, let Ff be the event that the first tail appears on flip j, and let H be the 
event that the first k flips are all heads. Because the events F1, ... , Fk, Hare mutually 
exclusive and exhaustive (that is, exactly one of these events must occur), we have 

k 

P(An) = LP(AnlFj)P(Fj) + P(AnlH)P(H) 
j=l 

Now, given that the first tail appears on flip j, where j < k, it follows that those j 
flips are wasted as far as obtaining a string of k heads in a row; thus, the conditional 
probability of this event is the probability that such a string will occur among the 
remaining n - j flips. Therefore, 

Because P(AnlH) = 1, the preceding equation gives 

Pn = P(An) 

k 

= LPn-jP(Fj) + P(H) 
j=l 

k 
'"' . 1 k = ~Pn-iP1- (1 - p) + p 
j=l 

Starting with Pj = 0, j < k, and Pk =pk, we can use the latter formula to recur
sively compute Pk+1,Pk+2• and so on, up to Pn. For instance, suppose we want the 
probability that there is a run of 2 consecutive heads when a fair coin is flipped 4 
times. Then, with k = 2, we have P1 = 0, P2 = (1/2)2. Because, whenp = 1/2, the 
recursion becomes 

k 
'"' . k Pn = ~ Pn-j (1/2)1 + (1/2) 
j=l 

we obtain 

P3 = P2(1/2) + P1 (1/2)2 + (1/2)2 = 3/8 

and 

P4 = P3(1/2) + P2(1/2)2 + (1/2)2 = 1/2 
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which is clearly true because there are 8 outcomes that result in a string of 2 consecu
tive heads: hhhh, hhht, hhth, hthh, thhh, hhtt, thht, and tthh. Each of these outcomes 
occurs with probability 1/16. • 

Another use of the Poisson probability distribution arises in situations where 
"events" occur at certain points in time. One example is to designate the occurrence 
of an earthquake as an event; another possibility would be for events to correspond 
to people entering a particular establishment (bank, post office, gas station, and so 
on); and a third possibility is for an event to occur whenever a war starts. Let us 
suppose that events are indeed occurring at certain (random) points of time, and let 
us assume that for some positive constant>.., the following assumptions hold true: 

1. The probability that exactly 1 event occurs in a given interval of length h is 
equal to >..h + o(h), where o(h) stands for any function f(h) for which 
lim f(h)/h = 0. [For instance,f(h) = h2 is o(h), whereas/(h) =his not.] 

h--+0 
2. The probability that 2 or more events occur in an interval of length h is equal 

to o(h). 

3. For any integers n, ji, jz, ... , jn and any set of n nonoverlapping intervals, if 
we define Ei to be the event that exactly h of the events under consideration 
occur in the ith of these intervals, then events Ei, Ez, ... , En are independent. 

Loosely put, assumptions 1 and 2 state that for small values of h, the probability 
that exactly 1 event occurs in an interval of size h equals >..h plus something that is 
small compared with h, whereas the probability that 2 or more events occur is small 
compared with h. Assumption 3 states that whatever occurs in one interval has no 
(probability) effect on what will occur in other, nonoverlapping intervals. 

We now show that under assumptions 1, 2, and 3, the number of events occurring 
in any interval of length t is a Poisson random variable with parameter >..t. To be 
precise, let us call the interval [O, t] and denote the number of events occurring in 
that interval by N(t). To obtain an expression for P{N(t) = k}, we start by breaking 
the interval [O, t] into n nonoverlapping subintervals, each of length tin (Figure 8). 

Now, 

1. k 11. 
n n n 

Figure 8 

P{N(t) = k} = P{k of then subintervals contain exactly 1 event 

and the other n - k contain 0 events} 

+ P{N(t) = k and at least 1 subinterval contains 

2 or more events} 

(7.2) 

The preceding equation holds because the event on the left side of Equation (7.2), 
that is, {N(t) = k}, is clearly equal to the union of the two mutually exclusive events 
on the right side of the equation. Letting A and B denote the two mutually exclusive 
events on the right side of Equation (7.2), we have 
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P(B) :5 P{ at least one subinterval contains 2 or more events} 

~ P (~( ith subinterval contains 2 or more events)) 

n '°' by Boole's s L.,, P{ith subinterval contains 2 or more events} inequality 
i=l 

=to(~) 
1=1 

=no(~) 
= t [o(t/n)] 

t/n 

by assumption 2 

Now, in addition, for any t, t/n~O as n~oo. so o(t/n)/(t/n)~O as n~oo. by the def
inition of o(h). Hence, 

P(B)~O as n~oo 

Moreover, since assumptions 1and2 imply thatt 

P{O events occur in an interval of length h} 

= 1 - [.>1.h + o(h) + o(h)] = 1 - J...h - o(h) 

we see from the independence assumption (number 3) that 

P(A) = P{k of the subintervals contain exactly 1 event and the other 

n - k contain 0 events} 

However, since 

n[~ + o(~)] =At+ t[ 0~;:>]~J...t as n~oo 

(7.3) 

it follows, by the same argument that verified the Poisson approximation to the bino
mial, that 

(J...t)k 
P(A)~e-A.t__ as n~oo 

kl 

Thus, from Equations (7.2), (7.3), and (7.4), by letting n~oo. we obtain 

(J...t)k 
P{N(t) = k} = e-A.t__ k 0 1 kl = , , ... 

(7.4) 

(7.5) 

Hence, if assumptions 1, 2, and 3 are satisfied, then the number of events occur
ring in any fixed interval of length t is a Poisson random variable with mean J...t, and 
we say that the events occur in accordance with a Poisson process having rate /.... The 
value/..., which can be shown to equal the rate per unit time at which events occur, is 
a constant that must be empirically determined. 

tnie sum of two functions, both of which are o(h), is also o(h). This is so because if limh~of(h)/h = 
limh~og(h)/h = 0, then limh~o[f(h) + g(h)]/h = 0. 
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The preceding discussion explains why a Poisson random variable is usually a 
good approximation for such diverse phenomena as the following: 

1. The number of earthquakes occurring during some fixed time span 
2. The number of wars per year 
3. The number of electrons emitted from a heated cathode during a fixed time 

period 
4. The number of deaths, in a given period of time, of the policyholders of a life 

insurance company 

Suppose that earthquakes occur in the western portion of the United States in accor
dance with assumptions 1, 2, and 3, with>..= 2 and with 1 week as the unit of time. 
(That is, earthquakes occur in accordance with the three assumptions at a rate of 2 
per week.) 

(a) Find the probability that at least 3 earthquakes occur during the next 2 weeks. 
(b) Find the probability distribution of the time, starting from now, until the next 

earthquake. 

Solution (a) From Equation (7.5), we have 

P{N(2) ~ 3} = 1-P{N(2) = 0} - P{N(2) = 1} - P{N(2) = 2} 
42 = 1 - e-4 - 4e-4 - -e-4 
2 

= 1 - 13e-4 

(b) Let X denote the amount of time (in weeks) until the next earthquake. 
Because X will be greater than t if and only if no events occur within the next t 
units of time, we have, from Equation (7.5), 

P{X > t} = P{N(t) = O} = e-M 

so the probability distribution function F of the random variable X is given by 

F(t) = P{X s; t} = 1 - P{X > t} = 1 - e->..t 

= 1 - e-2t 

7.1 Computing the Poisson Distribution Function 

If Xis Poisson with parameter>.., then 

• 

P{X = i + l} e->->..i+l /(i + 1)! >.. 
P{X = i} = e->->..i/i! = i + 1 (7·6) 

Starting with P{X = O} = e->-, we can use (7.6) to compute successively 

P{X = 1} = >..P{X = O} 
>.. 

P{X = 2} = -P{X = 1} 
2 

>.. 
P{X = i + 1} = -. - 1 P{X = i} z+ 

We can use a module to compute the Poisson probabilities for Equation (7.6). 

157 



158 

Example 
7f 

Random Variables 

(a) Determine P{X :::; 90} when Xis Poisson with mean 100. 
(b) Determine P{Y ::5 1075} when Y is Poisson with mean 1000. 

Solution Using the Poisson calculator of StatCrunch yields the solutions: 

(a) P{X :::; 90} = .17138 
(b) P{Y :::; 1075} = .99095 • 

8 Other Discrete Probability Distributions 

Example 
Ba 

8.1 The Geometric Random Variable 

Suppose that independent trials, each having a probability p, 0 < p < 1, of being a 
success, are performed until a success occurs. If we let X equal the number of trials 
required, then 

P{X = n} = (1 - p)n-lp n = 1,2, ... (8.1) 

Equation (8.1) follows because, in order for X to equal n, it is necessary and suffi
cient that the first n - 1 trials are failures and the nth trial is a success. Equation (8.1) 
then follows, since the outcomes of the successive trials are assumed to be indepen
dent. 

Since 
00 00 '°' P{X=n} =p '°'(1 - p)n-l = P = 1 

L., L., 1 - (1 - p) 
n=1 n=1 

it follows that with probability 1, a success will eventually occur. Any random vari
able X whose probability mass function is given by Equation (8.1) is said to be a 
geometric random variable with parameter p. 

An urn contains N white and M black balls. Balls are randomly selected, one at a 
time, until a black one is obtained. If we assume that each ball selected is replaced 
before the next one is drawn, what is the probability that 

(a) exactly n draws are needed? 
(b) at least k draws are needed? 

Solution If we let X denote the number of draws needed to select a black ball, then 
X satisfies Equation (8.1) withp = M/(M + N). Hence, 

(a) 

( 
N )n-1 M MNn-1 

P{X = n} = M + N M + N = (M + N)n 

(b) 
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Of course, part (b) could have been obtained directly, since the probability that at 
least k trials are necessary to obtain a success is equal to the probability that the first 
k - 1 trials are all failures. That is, for a geometric random variable, 

P{X <::: k} = (1 - p)k-l 

Find the expected value of a geometric random variable. 

Solution With q = 1 - p, we have 

Hence, 

yielding the result 

00 

E[X] = Liqi-lp 
i=l 
00 

= L,u - i + 1)qi-lP 
i=l 
00 00 

= L,(i - 1)qi-lp + L,qi-lp 
i=l 
00 

= L,jqip + 1 
i=O 

00 

= q L,jqi-lp + 1 
i=l 

= qE[X] + 1 

pE[X] = 1 

E[X] = ! 
p 

• 

In other words, if independent trials having a common probability p of being suc
cessful are performed until the first success occurs, then the expected number of 
required trials equals 1/p. For instance, the expected number of rolls of a fair die 
that it takes to obtain the value 1 is 6. • 

Find the variance of a geometric random variable. 

Solution To determine Var(X), let us first compute E[X2]. With q = 1 - p, we have 

00 

E[X2] = L i2qi-lp 
i=l 
00 

= L,(i - i + 1)2qi-lp 

i=l 
00 00 00 

= L,u _ 1)2qi-1P + r:, 2u _ l)qi-1P + L,qi-lP 
i=l i=l 

00 00 

= L,/qip + 2 L,jqip + 1 
j=O j=l 

= qE[X2] + 2qE[X] + 1 
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Using E[X] = 1/p, the equation for E[X2] yields 

pE[X2] = 2q + 1 
p 

Hence, 

giving the result 

E[X2] = 2q ~ p = q ~ 1 
p p 

q + 1 
Var(X) = --2 -p 

1 q 1 - p 
p2 = p2 =-pr-

8.2 The Negative Binomial Random Variable 

• 

Suppose that independent trials, each having probability p, 0 < p < 1, of being a 
success are performed until a total of r successes is accumulated. If we let X equal 
the number of trials required, then 

P{X = n} = ( ~ = ~ )pr(l - p)n-r n = r,r + 1,... (8.2) 

Equation (8.2) follows because, in order for the rth success to occur at the nth trial, 
there must be r - 1 successes in the first n - 1 trials and the nth trial must be a 
success. The probability of the first event is 

( n - 1) r-l(l 
r - 1 p 

)n-r -p 

and the probability of the second is p; thus, by independence, Equation (8.2) is estab
lished. To verify that a total of r successes must eventually be accumulated, either 
we can prove analytically that 

(8.3) 

or we can give a probabilistic argument as follows: The number of trials required 
to obtain r successes can be expressed as Y1 + Y2 + · · · + Yr, where Y1 equals 
the number of trials required for the first success, Y2 the number of additional trials 
after the first success until the second success occurs, Y3 the number of additional 
trials until the third success, and so on. Because the trials are independent and all 
have the same probability of success, it follows that Y1, Y2, ... , Yr are all geometric 

r 
random variables. Hence, each is finite with probability 1, so .E Y; must also be finite, 

i=l 
establishing Equation (8.3). 

Any random variable X whose probability mass function is given by 
Equation (8.2) is said to be a negative binomial random variable with parameters 
(r, p ). Note that a geometric random variable is just a negative binomial with param
eter (1,p). 

In the next example, we use the negative binomial to obtain another solution of 
the problem of the points. 
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If independent trials, each resulting in a success with probability p, are performed, 
what is the probability of r successes occurring before m failures? 

Solution The solution will be arrived at by noting that r successes will occur before 
m failures if and only if the rth success occurs no later than the (r + m - 1) trial. 
This follows because ifthe rth success occurs before or at the (r + m - 1) trial, then 
it must have occurred before the mth failure, and conversely. Hence, from Equa
tion (8.2), the desired probability is 

r+m-1 ( ) ~ ~ = ~ p' (1 - p r-r • 
The Banach match problem 

At all times, a pipe-smoking mathematician carries 2 matchboxes-1 in his left-hand 
pqcket and 1 in his right-hand pocket. Each time he needs a match, he is equally 
likely to take it from either pocket. Consider the moment when the mathematician 
first discovers that one of his matchboxes is empty. If it is assumed that both match
boxes initially contained N matches, what is the probability tfiat there are exactly k 
matches, k = 0, 1, ... , N, in the other box? 

Solution Let E denote the event that the mathematician first discovers that the 
right-hand matchbox is empty and that there are k matches in the left-hand box 
at the time. Now, this event will occur if and only if the (N + 1) choice of the right
hand matchbox is made at the (N + 1 + N - k) trial. Hence, from Equation (8.2) 
(withp = !,r = N + 1,and n = 2N - k + 1), we see that 

( 2N _ k) (1)2N-k+l 
P(E) = N 2 

Since there is an equal probability that it is the left-hand box that is first discovered 
to be empty and there are k matches in the right-hand box at that time, the desired 
result is 

2P(E) = ( 2N; k) (~)2N-k • 
Compute the expected value and the variance of a negative binomial random vari
able with parameters r and p. 

Solution We have 
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where Y is a negative binomial random variable with parameters r + 1,p. Setting 
k = 1 in the preceding equation yields 

E[X] = !._ 
p 

Setting k = 2 in the equation for E[Xk] and using the formula for the expected value 
of a negative binomial random variable gives 

Therefore, 

E[X2] = !_E[Y - 1] 
p 

=;c;1-1) 

r (r + 1 Var(X) = - --
p p 
r(l - p) 

p2 • 
Thus, from Example 8f, if independent trials, each of which is a success with 

probability p, are performed, then the expected value and variance of the number 
of trials that it takes to amass r successes is rip and r(l - p) / p2, respectively. 

Since a geometric random variable is just a negative binomial with parameter 
r = 1, it follows from the preceding example that the variance of a geometric random 
variable with parameter pis equal to (1 - p)/p2, which checks with the result of 
Example 8c. 

Find the expected value and the variance of the number of times one must throw a 
die until the outcome 1 has occurred 4 times. 

Solution Since the random variable of interest is a negative binomial with parame
ters r = 4 and p = ~, it follows that 

E[X] = 24 

Var(X) = 4 ( ~i = 120 

(~) 
• 

8.3 The Hypergeometric Random Variable 

Suppose that a sample of size n is to be chosen randomly (without replacement) 
from an urn containing N balls, of which m are white and N - m are black. If we let 
X denote the number of white balls selected, then 

P{X = i} = i = 0, 1, ... ,n (8.4) 

A random variable X whose probability mass function is given by Equation (8.4) for 
some values of n, N, mis said to be a hypergeometric random variable. 
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Remark Although we have written the hypergeometric probability mass function 
with i going from 0 to n, P{X = i} will actually be 0, unless i satisfies the inequalities 
n - (N - m) ::5 i ::5 min(n,m). However, Equation (8.4) is always valid because of 

our convention that ( ~ ) is equal to 0 when either k < 0 or r < k. • 

An unknown number, say, N, of animals inhabit a certain region. To obtain some 
information about the size of the population, ecologists often perform the follow
ing experiment: They first catch a number, say, m, of these animals, mark them in 
some manner, and release them. After allowing the marked animals time to disperse 
throughout the region, a new catch of size, say, n, is made. Let X denote the number 
of marked animals in this second capture. If we assume that the population of ani
mals in the region remained fixed between the time of the two catches and that each 
time an animal was caught it was equally likely to be any of the remaining uncaught 
animals, it follows that Xis a hypergeometric random variable such that 

P{X = i} = 

Suppose now that X is observed to equal i. Then, since Pi(N) represents the 
probability of the observed event when there are actually N animals present in the 
region, it would appear that a reasonable estimate of N would be the value of N 
that maximizes Pi(N). Such an estimate is called a maximum likelihood estimate. 
(See Theoretical Exercises 13 and 18 for other examples of this type of estimation 
procedure.) 

The maximization of Pi(N) can be done most simply by first noting that 

Pi(N) (N - m)(N - n) 
----= 
Pi(N - 1) N(N - m - n + i) 

Now, the preceding ratio is greater than 1 if and only if 

(N - m)(N - n) ~ N(N - m - n + i) 

or, equivalently, if and only if 
N ::5 mn 

i 

Thus, Pi(N) is first increasing and then decreasing and reaches its maximum value at 
the largest integral value not exceeding mnli. This value is the maximum 
likelihood estimate of N. For example, suppose that the initial catch consisted of 
m = 50 animals, which are marked and then released. If a subsequent catch consists 
of n = 40 animals of which i = 4 are marked, then we would estimate that there are 
some 500 animals in the region. (Note that the preceding estimate could also have 
been obtained by assuming that the proportion of marked animals in the region, 
m/N, is approximately equal to the proportion of marked animals in our second 
catch, iln.) • 

A purchaser of electrical components buys them in lots of size 10. It is his policy 
to inspect 3 components randomly from a lot and to accept the lot only if all 3 are 
nondefective. If 30 percent of the lots have 4 defective components and 70 percent 
have only 1, what proportion of lots does the purchaser reject? 
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Solution Let A denote the event that the purchaser accepts a lot. Now, 

P(A) = P(Allot has 4 defectives) :o + P(Allot has 1defective) 1
7
0 

~ ( ~ ) ( n (2-) + ( ~) u) (2-) 
(130) 10 (130) 10 

54 
= 100 

Hence, 46 percent of the lots are rejected. • 
If n balls are randomly chosen without replacement from a set of N balls of 

which the fraction p = m/N is white, then the number of white balls selected is 
hypergeometric. Now, it would seem that when m and N are large in relation to 
n, it shouldn't make much difference whether the selection is being done with or 
without replacement, because, no matter which balls have previously been selected, 
when m and N are large, each additional selection will be white with a probability 
approximately equal top. In other words, it seems intuitive that when m and N are 
large in relation to n, the probability mass function of X should approximately be 
that of a binomial random variable with parameters n and p. To verify this intuition, 
note that if X is hypergeometric, then, for i :$ n, 

P{X = i} = 

m! (N - m)! (N - n)! n! 
= --------------------

(m - i)! i! (N - m - n + i)! (n - i)! N! 

= (~) ~m - 1 ... m - i + 1N - mN - m - 1 
i NN-1 N-i+1N-i N-i-1 

N - m - (n - i - 1) 

N - i - (n - i - 1) 

(n). . whenp=m/NandmandNare 
~ i p 1(1 - p)n-i large in relation ton and i 

Determine the expected value and the variance of X, a hypergeometric random vari
able with parameters n, N, and m. 

Solution 
n 

E[Xk] = LikP{X = i} 

Using the identities 

·(m) (m - 1) (N) (N - 1) l i = m i _ 1 and n n = N n _ 1 
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we obtain 

E[Xk] = n; ~ ik-1 ( 7 ~ i1 ) ( ~ ~ 7) / ( ~ = i ) 
~; ~(i + l)k-1 ( m j 1) ( n JV_~: j) / ( ~ =:) 
= nm E[(Y + l)k-1] 

N 

where Y is a hypergeometric random variable with parameters n - 1, N - 1, and 
m - 1. Hence, upon setting k = 1, we have 

E[X] =nm 
N 

In words, if n balls are randomly selected from a set of N balls, of which m are white, 
then the expected number of white balls selected is nm/N. 

Upon setting k = 2 in the equation for E[Xk], we obtain 

E[X2] = n; E[Y + 1] 

= nm [ (n - l)(m - 1) + 1] 
N N - 1 

where the final equality uses our preceding result to compute the expected value of 
the hypergeometric random variable Y. 

Because E[X] = nm/N, we can conclude that 

,i X nm [(n - l)(m - 1) nm] 
var( ) = N N - 1 + 1 - N 

Lettingp = m/N and using the identity 

shows that 

m - 1 Np - 1 1 - p 
N - 1 = N - 1 =p - N - 1 

1 - p 
Var(X) = np[(n - l)p - (n - 1)-- + 1 - np] 

N - 1 

= np(l - p) 1 - --( n - 1) 
N - 1 • 

Remark We have shown in Example 8j that if n balls are randomly selected with
out replacement from a set of N balls, of which the fraction p are white, then the 
expected number of white balls chosen is np. In addition, if N is large in relation to 
n [so that (N - n)/(N - 1) is approximately equal to 1], then 

Var(X) >:::: np(l - p) 

In other words, E[X] is the same as when the selection of the balls is done with 
replacement (so that the number of white balls is binomial with parameters n 
and p ), and if the total collection of balls is large, then Var(X) is approximately equal 
to what it would be if the selection were done with replacement. This is, of course, 
exactly what we would have guessed, given our earlier result that when the number 
of balls in the urn is large, the number of white balls chosen approximately has the 
mass function of a binomial random variable. • 
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8.4 The Zeta (or Zipf) Distribution 

A random variable is said to have a zeta (sometimes called the Zipf) distribution if 
its probability mass function is given by 

c 
P{X = k} = /(a+l k = 1,2, ... 

for some value of a > 0. Since the sum of the foregoing probabilities must equal 1, 
it follows that 

The zeta distribution owes its name to the fact that the function 

~(s) = 1 + (~Y + (~Y + · · · + (~Y + · · · 

is known in mathematical disciplines as the Riemann zeta function (after the 
German mathematician G. F. B. Riemann). 

The zeta distribution was used by the Italian economist V. Pareto to describe 
the distribution of family incomes in a given country. However, it was G. K. Zipf 
who applied zeta distribution to a wide variety of problems in different areas and, in 
doing so, popularized its use. 

9 Expected Value of Sums of Random Variables 

Example 
9a 

A very important property of expectations is that the expected value of a sum of 
random variables is equal to the sum of their expectations. In this section, we will 
prove this result under the assumption that the set of possible values of the proba
bility experiment-that is, the sample space S-is either finite or countably infinite. 
Although the result is true without this assumption (and a proof is outlined in the 
theoretical exercises), not only will the assumption simplify the argument, but it will 
also result in an enlightening proof that will add to our intuition about expectations. 
So, for the remainder of this section, suppose that the sample space Sis either a finite 
or a countably infinite set. 

For a random variable X, let X(s) denote the value of X whens E Sis the 
outcome of the experiment. Now, if X and Y are both random variables, then so 
is their sum. That is, Z = X + Y is also a random variable. Moreover, Z(s) = 
X(s) + Y(s). 

Suppose that the experiment consists of flipping a coin 5 times, with the outcome 
being the resulting sequence of heads and tails. Suppose X is the number of heads 
in the first 3 flips and Y is the number of heads in the final 2 flips. Let Z = X + Y. 
Then, for instance, for the outcome s = (h, t, h, t, h ), 

X(s) = 2 

Y(s) = 1 
Z(s) = X(s) + Y(s) = 3 

meaning that the outcome (h, t, h, t, h) results in 2 heads in the first three flips, 1 head 
in the final two flips, and a total of 3 heads in the five flips. • 
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Let p(s) = P({s}) be the probability thats is the outcome of the experiment. 
Because we can write any event A as the finite or countably infinite union of the 
mutually exclusive events {s}, s E A, it follows by the axioms of probability that 

P(A) = _Lp(s) 
seA 

When A = S, the preceding equation gives 

1 = _Lp(s) 
seS 

Now, let X be a random variable, and consider E[X]. Because X(s) is the value of X 
whens is the outcome of the experiment, it seems intuitive that E[X]-the weighted 
average of the possible values of X, with each value weighted by the probability that 
X assumes that value-should equal a weighted average of the values X(s),s E S, 
with X(s) weighted by the probability thats is the outcome of the experiment. We 
now prove this intuition. 

E[X] = _LX(s)p(s) 
seS 

Proof Suppose that the distinct values of X are Xi, i ~ 1. For each i, let Si be the 
event that Xis equal to Xi. That is, Si= {s: X(s) =xi}. Then, 

E[X] = L XiP{X = xi} 
i 

= _Lxi_Lp(s) 
i seS; 

i seS; 

= LL X(s)p(s) 
i seS; 

= _LX(s)p(s) 
seS 

where the final equality follows because S1, S2, ... are mutually exclusive events 
whose union is S. D 

Suppose that two independent flips of a coin that comes up heads with probability p 
are made, and let X denote the number of heads obtained. Because 

P(X = 0) = P(t,t) = (1 - p)2, 

P(X = 1) = P(h,t) + P(t,h) = 2p(1 - p) 

P(X = 2) = P(h,h) = p 2 

it follows from the definition of expected value that 

E[X] = 0 · (1 - p)2 + 1 · 2p(1 - p) + 2 . p 2 = 2p 
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which agrees with 

E[X] =X(h,h)p2 + X(h,t)p(l - p) + X(t,h)(l - p)p + X(t,t)(l - p)2 

=2p2 + p(l - p) + (1 - p)p 

=2p • 
We now prove the important and useful result that the expected value of a sum of 
random variables is equal to the sum of their expectations. 

For random variables X1,X2, ... ,Xn, 

Proof Let Z = L:7=1 Xi. Then, by Proposition 9.1, 

E[Z] = L Z(s)p(s) 
seS 

seS 

seS seS seS 

= E[Xi] + E[X2] + ... + E[Xn] 

Find the expected value of the sum obtained when n fair dice are rolled. 

Solution Let X be the sum. We will compute E[X] by using the representation 

• 

where Xi is the upturned value on die i. Because Xi is equally likely to be any of the 
values from 1 to 6, it follows that 

6 

E[Xi] = L i(l/6) = 21/6 = 7 /2 
i=l 

which yields the result 

• 
Find the expected total number of successes that result from n trials when trial i is a 
success with probability Pi. i = 1, ... , n. 

Solution Letting 

{ 1 if trial i is a success 
xi = o: if trial i is a failure 

we have the representation 
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Consequently, n n 

E[X] = I: E[Xi] = LPi 
i=l i=l 

Note that this result does not require that the trials be independent. It includes as 
a special case the expected value of a binomial random variable, which assumes 
independent trials and all Pi = p, and thus has mean np. It also gives the expected 
value of a hypergeometric random variable representing the number of white balls 
selected when n balls are randomly selected, without replacement, from an urn of 
N balls of which m are white. We can interpret the hypergeometric as representing 
the number of successes in n trials, where trial i is said to be a success if the ith ball 
selected is white. Because the ith ball selected is equally likely to be any of the N balls 
and thus has probability m/N of being white, it follows that the hypergeometric is 
the number of successes in n trials in which each trial is a success with probability 
p = m/N. Hence, even though these hypergeometric trials are dependent, it follows 
from the result of Example 9d that the expected value of the hypergeometric is np = 

nm/N. • 

Derive an expression for the variance of the number of succe~sful trials in Example 
9d, and apply it to obtain the variance of a binomial random variable with parame
ters n and p, and of a hypergeometric random variable equal to the number of white 
balls chosen when n balls are randomly chosen from an urn containing N balls of 
which m are white. 

Solution Letting X be the number of successful trials, and using the same represen
tation for X-namely, X = L~l Xi-as in the previous example, we have 

mx21 ~ E [ (t,x) (Exi)] 
d[ t,x, (x, +~xi)] 
~ e [t,xr + t,~x,xi] 

n n 

= L E[Xf] + LL E[XiXj] 
i=l 

n 

= LPi + LLE[XiXj] 
i=l fr'i 

(9.1) 

where the final equation used that Xf = Xi. However, because the possible values 
of both Xi and Xj are 0 or 1, it follows that 

Hence, 

XX_ { 1, if Xi= l,Xj = 1 
1 ' - 0, otherwise 

E[XiXj] = P{Xi = l,Xj = 1} = P(trials i andj are successes) 
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Now, on the one hand, if Xis binomial, then, for i * j, the results of trial i and trial j 
are independent, with each being a success with probability p. Therefore, 

Together with Equation (9.1), the preceding equation shows that for a binomial ran
dom variable X, 

E[X2] = np + n(n - l)p2 

implying that 

Var(X) = E[X2] - (E[X])2 = np + n(n - l)p2 - n2p2 = np(l - p) 

On the other hand, if X is hypergeometric, then, given that a white ball is chosen 
in trial i, each of the other N - 1 balls, of which m - 1 are white, is equally likely 
to be the jth ball chosen, for j * i. Consequently, for j * i, 

mm -1 
P{Xi = 1,Xj = 1} = P{Xi = l}P{Xj = liXi = 1} = - -

N N -1 

Usingpi = m/N, we now obtain, from Equation (9.1), 

2 nm mm-1 
E[X ] = - + n(n - 1) - --

N N N-1 

Consequently, 

nm mm - 1 (nNm) 2 
Var(X) = N + n(n - 1) N N _ 1 -

which, as shown in Example 8j, can be simplified to yield 

Var(X) = np(l - p) 1 - --( n - 1) 
N - 1 

where p = m/N. 

IO Properties of the Cumulative Distribution Function 

• 

For the distribution function F of X, F(b) denotes the probability that the random 
variable X takes on a value that is less than or equal to b. Following are some prop
erties of the cumulative distribution function ( c.d.f.) F: 

1. Fis a nondecreasing function; that is, if a < b, then F(a) :5 F(b). 

2. lim F(b) = 1. 
b-+oo 

3. lim F(b) = 0. 
b-+-oo 

4. Fis right continuous. That is, for any band any decreasing sequence bn,n;::::: 1, 
that converges to b, lim F(bn) = F(b). 

n-+oo 

Property 1 follows, as was noted in Section 1, because, for a < b, the event 
{X :::;; a} is contained in the event {X :::;; b} and so cannot have a larger probability. 
Properties 2, 3, and 4 all follow from the continuity property of probabilities. For 
instance, to prove property 2, we note that if bn increases to oo, then the events 
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{X s bn}, n ::::: 1, are increasing events whose union is the event {X < oo}. Hence, 
by the continuity property of probabilities, 

lim P{X s bn} = P{X < oo} = 1 
n~oo 

which proves property 2. 
The proof of property 3 is similar and is left as an exercise. To prove property 4, 

we note that if bn decreases to b, then {X s bn},n::::: 1, are decreasing events whose 
intersection is {X ::S b}. The continuity property then, yields 

lim P{X s bn} = P{X s b} 
n~oo 

which verifies property 4. 
All probability questions about X can be answered in terms of the c.d.f., F. For 

example, 

P{a < X s b} = F(b) - F(a) for all a < b (10.1) 

This equation can best be seen to hold if we write the event {X s b} as the union of 
the mutually exclusive events {X ::S a} and {a < X s b}. That is, 

{X s b} = {X s a} U {a < X s b} 

so 

P{X s b} = P{X s a} + P{a < X s b} 

which establishes Equation (10.1). 
If we want to compute the probability that Xis strictly less than b, we can again 

apply the continuity property to obtain 

P{X < b} = P ( n~oo { X ::S b - ~}) 
= lim P(xsb -
n~oo ~) 

= lim F(b - ~) 
n~oo n 

Note that P{X < b} does not necessarily equal F(b), since F(b) also includes the 
probability that X equals b. 
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The distribution function of the random variable X is given by 

0 x < 0 
x 

0:5x<l 
2 
2 

l:5x<2 F(x) = 3 
11 

2:5x<3 
12 
1 3 :5 x 

A graph of F(x) is presented in Figure 9. Compute (a) P{X < 3}, (b) P{X = l}, (c) 
P{X > !l. and (d) P{2 < X :5 4}. 

Solution (a) P{X < 3} = limP {x :s 3 - !} = limF (3 - !) = 11 
n n n n 12 

(b) 

(c) 

(d) 

P{X = l} = P{X :5 1} - P{X < 1} 

F(x) 

2 
3 
I 
2 

= F(l) - limF (1 - !) = ~ - ~ = ~ 
n n 3 2 6 

P {x > ~} = 1 - P {x :s ~} 

= 1 - F(~) = ~ 

P{2 < X :5 4} = F(4) - F(2) 

1 
=-

12 

1 2 3 

Figure 9 Graph of F(x). 

• 



Random Variables 

Summary 

A real-valued function defined on the outcome of a prob
ability experiment is called a random variable. 

If X is a random variable, then the function F(x) 
defined by 

F(x) = P{X s x} 

is called the distribution function of X. All probabilities 
concerning X can be stated in terms of F. 

A random variable whose set of possible values is 
either finite or countably infinite is called discrete. If Xis a 
discrete random variable, then the function 

p(x) = P{X = x} 

The random variable X whose probability mass function is 
given by 

e-J..>J . 
p(l) = -.,- l ~ 0 

l. 

is said to be a Poisson random variable with parameter .A.. 
If a large number of (approximately) independent trials 
are performed, each having a small probability of being 
successful, then the number of successful trials that result 
will have a distribution that is approximately that of a Pois
son random variable. The mean and variance of a Poisson 
random variable are both equal to its parameter .A.. That is, 

E[X] = Var(X) = A 

is called the probability mass function of X. Also, the The random variable X whose probability mass function is 
quantity E[X] defined by given by 

E[X] = L xp(x) 
x:p(x)>O 

is called the expected value of X. E[X] is also commonly 
called the mean or the expectation of X. 

A useful identity states that for a function g, 

E[g(X)] = L g(x)p(x) 

p(l) = p(l - p)i-l i = J· 2, ... 

is said to be a geometric random variable with parameter 
p. Such a random variable represents the trial number of 
the first success when each trial is independently a success 
with probability p. Its mean and variance are given by 

1 1 - p 
E[X] = - Var(X) = - 2-

p p 

x:p(x)>O The random variable X whose probability mass function is 

The variance of a random variable X, denoted by Var(X), given by 
is defined by 

Var(X) = E[ (X - E[X])2] 

The variance, which is equal to the expected square of 
the difference between X and its expected value, is a mea
sure of the spread of the possible values of X. A useful 
identity is · 

Var(X) = E[X2] - (E[X])2 

The quantity ./Var(X) is called the standard deviation 
ofX. 

We now note some common types of discrete random 
variables. The random variable X whose probability mass 
function is given by 

(") ( n) i(l )n-i · _ 0 pi = i p - p i - , ... ,n 

is said to be a binomial random variable with parameters n 
and p. Such a random variable can be interpreted as being 
the number of successes that occur when n independent 
trials, each of which results in a success with probability p, 
are performed. Its mean and variance are given by 

E[X] = np Var(X) = np(l - p) 

is said to be a negative binomial random variable with 
parameters rand p. Such a random variable represents the 
trial number of the rth success when each trial is indepen
dently a success with probability p. Its mean and variance 
are given by 

r r(l - p) 
E[X] = - Var(X) = 2 p p 

A hypergeometric random variable X with parameters n, 
N, and m represents the number of white balls selected 
when n balls are randomly chosen from an urn that con
tains N balls of which m are white. The probability mass 
function of this random variable is given by 

. (7)(~~7) 
p(l) = ( ~) i=O, ... ,m 

Withp = m/N, its mean and variance are 

N- n 
E[X] = np Var(X) = N _ 1 np(l - p) 
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An important property of the expected value is that the 
expected value .of a sum of random variables is equal to 
the sum of their expected values. That is, 

Problems 

I. 1\vo balls are chosen randomly from an um containing 
8 white, 4 black, and 2 orange balls. Suppose that we win 
$2 for each black ball selected and we lose $1 for each 
white ball selected. Let X denote our winnings. What are 
the possible values of X, and what are the probabilities 
associated with each value? 

2. 1\vo fair dice are rolled. Let X equal the 
product of the 2 dice. Compute P{X = i} for i = 1, ... , 36. 

3. Three dice are rolled. By assuming that each of the 
63 = 216 possible outcomes is equally likely, find the 
probabilities attached to the possible values that X can 
take on, where X is the sum of the 3 dice. 

4. Five men and 5 women are ranked according to their 
scores on an examination. Assume that no two scores are 
alike and all 10! possible rankings are equally likely. Let 
X denote the highest ranking achieved by a woman. (For 
instance, X = 1 if the top-ranked person is female.) Find 
P{X = i},i = 1, 2, 3, ... , 8, 9, 10. 

11. (a) An integer N is to be selected at random from 
{1, 2, ... , (10)3 } in the sense that each integer has the same 
probability of being selected. What is the probability that 
N will be divisible by 3? by 5? by 7? by 15? by 105? How 
would your answer change if (10)3 is replaced by (lO)k as 
k became larger and larger? 
(b) An important function in number theory-one whose 
properties can be shown to be related to what is proba
bly the most important unsolved problem of mathemat
ics, the Riemann hypothesis-is the Mobius function µ,(n), 
defined for all positive integral values n as follows: Factor n 
into its prime factors. If there is a repeated prime factor, as 
in 12 = 2 · 2 · 3 or 49 = 7 · 7, then µ,(n) is defined to equal 
0. Now let N be chosen at random from {l, 2, ... (lO)k}, 
where k is large. Determine P{µ,(N) = O} as k-+oo. 
Hint: To compute P{µ,(N) *- 0}, use the identity 

noo Pf - 1 = (~) (~) (24) (48) ... = ~ 
p2 4 9 25 49 rr2 

i=l I 

where Pi is the ith-smallest prime. (The number 1 is not a 
S. Let X represent the difference between the number of prime.) 
heads and the number of tails obtained when a coin is 
tossed n times. What are the possible values of X? 

6. In Problem 5, for n = 3, if the coin is assumed fair, what 
are the probabilities associated with the values that X can 
take on? 

7. Suppose that a die is rolled twice. What are the possible 
values that the following random variables can take on: 

(a) the maximum value to appear in the two rolls; 
(b) the minimum value to appear in the two rolls; 
(c) the sum of the two rolls; 
(d) the value of the first roll minus the value of the second 
roll? 

8. If the die in Problem 7 is assumed fair, calculate the 
probabilities associated with the random variables in parts 
(a) through (d). 

9. Repeat Example le when the balls are selected with 
replacement. 

I 0. Let X be the winnings of a gambler. Let p(i) = P(X = 
i) and suppose that 

p(O) = 1/3; p(l) = p(-1) = 13/55; 

p(2) =p(-2) = l/ll;p(3) =p(-3) = 1/165 

Compute the conditional probability that the gambler 
wins i, i = 1, 2, 3, given that he wins a positive amount. 

12. In the game of Two-Finger Morra, 2 players show 1 
or 2 fingers and simultaneously guess the number of fin
gers their opponent will show. If only one of the players 
guesses correctly, he wins an amount (in dollars) equal to 
the sum of the fingers shown by him and his opponent. If 
both players guess correctly or if neither guesses correctly, 
then no money is exchanged. Consider a specified player, 
and denote by X the amount of money he wins in a single 
game of Two-Finger Morra. 

(a) If each player acts independently of the other, and if 
each player makes his choice of the number of fingers he 
will hold up and the number he will guess that his oppo
nent will hold up in such a way that each of the 4 possibili
ties is equally likely, what are the possible values of X and 
what are their associated probabilities? 
(b) Suppose that each player acts independently of the 
other. If each player decides to hold up the same num
ber of fingers that he guesses his opponent will hold up, 
and if each player is equally likely to hold up 1 or 2 fin
gers, what are the possible values of X and their associated 
probabilities? 

13. A salesman has scheduled two appointments to sell 
encyclopedias. His first appointment will lead to a sale with 
probability .3, and his second will lead independently to a 
sale with probability .6. Any sale made is equally likely to 
be either for the deluxe model, which costs $1000, or the 
standard model, which costs $500. Determine the proba
bility mass function of X, the total dollar value of all sales. 
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14. Five distinct numbers are randomly distributed to play
ers numbered 1 through 5. Whenever two players compare 
their numbers, the one with the higher one is declared the 
winner. Initially, players 1 and 2 compare their numbers; 
the winner then compares her number with that of player 
3, and so on. Let X denote the number of times player 1 is 
a winner. FmdP{X = i},i = 0, 1,2,3,4. 

15. The National Basketball Association (NBA) draft lot
tery involves the 11 teams that had the worst won-lost 
records during the year. A total of 66 balls are placed in 
an um. Each of these balls is inscribed with the name of a 
team: Eleven have the name of the team with the worst 
record, 10 have the name of the team with the second
worst record, 9 have the name of the team with the third
worst record, and so on (with 1 ball having the name of 
the team with the 11th-worst record). A ball is then cho
sen at random, and the team whose name is on the ball is 
given the first pick in the draft of players about to enter the 
league. Another ball is then chosen, and if it "belongs" to 
a team different from the one that received the first draft 
pick, then the team to which it belongs receives the second 
draft pick. (If the ball belongs to the team receiving the 
first pick, then it is discarded and another one is chosen; 
this continues until the ball of another team is chosen.) 
Fmally, another ball is chosen, and the team named on the 
ball (provided that it is different from the previous two 
teams) receives the third draft pick. The remaining draft 
picks 4 through 11 are then awarded to the 8 teams that 
did not "win the lottery," in inverse order of their won-lost 
records. For instance, if the team with the worst record did 
not receive any of the 3 lottery picks, then that team would 
receive the fourth draft pick. Let X denote the draft pick 
of the team with the worst record. Find the probability 
mass function of X. 

16. In Problem 15, let team number 1 be the team with 
the worst record, let team number 2 be the team with the 
second-worst record, and so on. Let Yi denote the team 
that gets draft pick number i. (Thus, Y1 = 3 if the first ball 
chosen belongs to team number 3.) Fmd the probability 
mass function of (a) Yi. (b) Y2, and (c) Y3. 

17. Suppose that the distribution function of Xis given by 

F(b) = 

0 
b 
4 

1 b - 1 
2 +-4-
11 
12 
1 

(a) Find P{X = i}, i = 1, 2, 3. 
(b)FmdP{! < X < ~}. 

b < 0 

O:Sb<l 

18. Four independent flips of a fair coin are made. Let X 
denote the number of heads obtained. Plot the probability 
mass function of the random variable X - 2. 

19. If the distribution function of Xis given by 

0 b < 0 
1 

0 :Sb< 1 
2 
3 

1 :Sb < 2 
F(b) = 5 

4 
5 

2 :Sb < 3 

9 
3 :Sb < 3.5 

10 
1 b;:::: 3.5 

calculate the probability mass function of X. 

20. A gambling book recommends the following "winning 
strategy" for the game of roulette: Bet $1 on red. If red 
appears (which has probability~), then take the $1 profit 
and quit. If red does not appear and you lose this bet 
(which has probability ~ of occurring), make additional 
$1 bets on red on each of the next two spins of the roulette 
wheel and then quit. Let X denote your winnings when 
you quit. 

(a) Find P{X > O}. 

(b) Are you convinced that the strategy is indeed a "win
ning" strategy? Explain your answer! 
(c) Find E[X]. 

21. Four buses carrying 148 students from the same school 
arrive at a football stadium. The buses carry, respectively, 
40, 33, 25, and 50 students. One of the students is randomly 
selected. Let X denote the number of students who were 
on the bus carrying the randomly selected student. One of 
the 4 bus drivers is also randomly selected. Let Y denote 
the number of students on her bus. 

(a) Which of E[X] or E[Y] do you think is larger? Why? 
(b) Compute E[X) and E[Y]. 

22. Suppose that two teams play a series of games that 
ends when one of them has won i games. Suppose that 
each game played is, independently, won by team A with 
probability p. Find the expected number of games that are 
played when (a) i = 2 and (b) i = 3. Also, show in both 
cases that this number is maximized when p = ! . 
23. You have $1000, and a certain commodity presently 
sells for $2 per ounce. Suppose that after one week the 
commodity will sell for either $1 or $4 an ounce, with these 
two possibilities being equally likely. 

(a) If your objective is to maximize the expected amount 
of money that you possess at the end of the week, what 
strategy should you employ? . 
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(b) If your objective is to maximize the expected amount 
of the commodity that you possess at the end of the week, 
what strategy should you employ? 

24. A and B play the following game: A writes down either 
number 1 or number 2, and B must guess which one. If the 
number that A has written down is i and B has guessed 
correctly, B receives i units from A. If B makes a wrong 
guess, B pays i unit to A. If B randomizes his decision 
by guessing 1 with probability p and 2 with probability 
1 - p, determine his expected gain if (a) A has written 
down number 1 and (b) A has written down number 2. 

What value of p maximizes the minimum possible value 
of B's expected gain, and what is this maximin value? 
(Note that B's expected gain depends not only on p, but 
also on what A does.) 

Consider now player A. Suppose that she also random
izes her decision, writing down number 1 with probability 
q. What is A's expected loss if ( c) B chooses number 1 and 
( d) B chooses number 2? 

What value of q minimizes A's maximum expected loss? 
Show that the minimum of A's maximum expected loss 
is equal to the maximum of B's minimum expected gain. 
This result, known as the minimax theorem, was first 
established in generality by the mathematician John von 
Neumann and is the fundamental result in the mathemati
cal discipline known as the theory of games. The common 
value is called the value of the game to player B. 

25. Two coins are to be flipped. The first coin will land on 
heads with probability .6, the second with probability .7. 
Assume that the results of the flips are independent, and 
let X equal the total number of heads that result. 

(a) Find P{X = l}. 
(b) Determine E[X]. 

26. One of the numbers 1 through 10 is randomly cho
sen. You are to try to guess the number chosen by asking 
questions with "yes-no" answers. Compute the expected 
number of questions you will need to ask in each of the 
following two cases: 

(a) Your ith question is to be "Is it i?" i = 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 
(b) With each question you try to eliminate one-half of the 
remaining numbers, as nearly as possible. 

27. An insurance company writes a policy to the effect 
that an amount of money A must be paid if some event 
E occurs within a year. If the company estimates that E 
will occur within a year with probability p, what should it 
charge the customer in order that its expected profit will 
be 10 percent of A? 

28. A sample of 3 items is selected at random from a box 
containing 20 items of which 4 are defective. Find the 
expected number of defective items in the sample. 

29. There are two possible causes for a breakdown of a 
machine. To check the first possibility would cost C1 dol
lars, and, if that were the cause of the breakdown, the 
trouble could be repaired at a cost of R1 dollars. Similarly, 
there are costs C2 and R2 associated with the second pos
sibility. Let p and 1 - p denote, respectively, the probabil
ities that the breakdown is caused by the first and second 
possibilities. Under what conditions on p, Ci, Ri, i = 1, 2, 
should we check the first possible cause of breakdown 
and then the second, as opposed to reversing the check
ing order, so as to minimize the expected cost involved in 
returning the machine to working order? 
Note: If the first check is negative, we must still check the 
other possibility. 

30. A person tosses a fair coin until a tail appears for the 
first time. If the tail appears on the nth flip, the person wins 
2n dollars. Let X denote the player's winnings. Show that 
E[X] = +oo. This problem is known as the St. Petersburg 
paradox. 

(a) Would you be willing to pay $1 million to play this 
game once? 
(b) Would you be willing to pay $1 million for each game 
if you could play for as long as you liked and only had to 
settle up when you stopped playing? 

31. Each night different meteorologists give us the proba
bility that it will rain the next day. To judge how well these 
people predict, we will score each of them as follows: If a 
meteorologist says that it will rain with probability p, then 
he or she will receive a score of 

1 - (1 - p)2 

1 - p2 
if it does rain 
if it does not rain 

We will then keep track of scores over a certain time span 
and conclude that the meteorologist with the highest aver
age score is the best predictor of weather. Suppose now 
that a given meteorologist is aware of our scoring mecha
nism and wants to maximize his or her expected score. If 
this person truly believes that it will rain tomorrow with 
probability p*, what value of p should he or she assert so 
as to maximize the expected score? 

32. To determine whether they have a certain disease, 100 
people are to have their blood tested. However, rather 
than testing each individual separately, it has been decided 
first to place the people into groups of 10. The blood sam
ples of the 10 people in each group will be pooled and 
analyzed together. If the test is negative, one test will suf
fice for the 10 people, whereas if the test is positive, each 
of the 10 people will also be individually tested and, in all, 
11 tests will be made on this group. Assume that the prob
ability that a person has the disease is .1 for' all people, 
independently of one another, and compute the expected 
number of tests necessary for each group. (Note that we 
are assuming that the pooled test will be positive if at least 
one person in the pool has the disease.) 
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33. A newsboy purchases papers at 10 cents and sells them 
at 15 cents. However, he is not allowed to return unsold 
papers. If his daily demand is a binomial random vari
able with n = 10,p = j, approximately how many papers 
should he purchase so as to maximize his expected profit? 

34. In Example 4b, suppose that the department store 
incurs an additional cost of c for each unit of unmet 
demand. (This type of cost is often referred to as a good
will cost because the store loses the goodwill of those 
customers whose demands it cannot meet.) Compute the 
expected profit when the store stocks s units, and deter
mine the value of s that maximizes the expected profit. 

35. A box contains 5 red and 5 blue marbles. Two marbles 
are withdrawn randomly. If they are the same color, then 
you win $1.10; if they are different colors, then you win 
-$1.00. (That is, you lose $1.00.) Calculate 

(a) the expected value of the amount you win; 
(b) the variance of the amount you win. 

36. Consider Problem 22 with i = 2. Find the variance of 
the number of games played, and show that this number is 
maximized when p = ! . 
37. Find Var(X) and Var(Y) for X and Y as given in Prob
lem 21. 

38. If E[X] = 1 and Var(X) = 5, find 

(a) E[(2 + X)2]; 

(b) Var(4 + 3X). 

39. A ball is drawn from an um containing 3 white and 
3 black balls. After the ball is drawn, it is replaced and 
another ball is drawn. This process goes on indefinitely. 
What is the probability that of the first 4 balls drawn, 
exactly 2 are white? 

40. On a multiple-choice exam with 3 possible answers for 
each of the 5 questions, what is the probability that a stu
dent will get 4 or more correct answers just by guessing? 

41. A man claims to have extrasensory perception. As a 
test, a fair coin is flipped 10 times and the man is asked to 
predict the outcome in advance. He gets 7 out of 10 cor
rect. What is the probability that he would have done at 
least this well if he did not have ESP? 

42. A and B will take the same 10-question examination. 
Each question will be answered correctly by A with prob
ability .7, independently of her results on other questions. 
Each question will be answered correctly by B with prob
ability .4, independently both of her results on the other 
questions and on the performance of A. 

(a) Find the expected number of questions that are 
answered correctly by both A and B. 
(b) Find the variance of the number of questions that are 
answered correctly by either A or B. 

43. A communications channel transmits the digits 0 and 
1. However, due to static, the digit transmitted is incor
rectly received with probability .2. Suppose that we want 
to transmit an important message consisting of one binary 
digit. To reduce the chance of error, we transmit 00000 
instead of 0 and 11111 instead of 1. If the receiver of the 
message uses "majority" decoding, what is the probabil
ity that the message will be wrong when decoded? What 
independence assumptions are you making? 

44. A satellite system consists of n components and func
tions on any given day if at least k of the n compo
nents function on that day. On a rainy day, each of the 
components independently functions with probability pi, 
whereas on a dry day, each independently functions with 
probability P2· If the probability of rain tomorrow is 
a, what is the probability that the satellite system will 
function? 

45. A student is getting ready to take an important oral 
examination and is concerned about the possibility of hav
ing an "on" day or an "off' day. He figures that if he has 
an on day, then each of his examiners will pass him, inde
pendently of one another, with probability .8, whereas if 
he has an off day, this probability will be reduced to .4. 
Suppose that the student will pass the examination if a 
majority of the examiners pass him. If the student believes 
that he is twice as likely to have an off day as he is to have 
an on day, should he request an examination with 3 exam
iners or with 5 examiners? 

46. Suppose that it takes at least 9 votes from a 12-member 
jury to convict a defendant. Suppose also that the prob
ability that a juror votes a guilty person innocent is .2, 
whereas the probability that the juror votes an innocent 
person guilty is .1. If each juror acts independently and if 
65 percent of the defendants are guilty, find the probability 
that the jury renders a correct decision. What percentage 
of defendants is convicted? 

47. In some military courts, 9 judges are appointed. How
ever, both the prosecution and the defense attorneys are 
entitled to a peremptory challenge of any judge, in which 
case that judge is removed from the case and is not 
replaced. A defendant is declared guilty if the majority 
of judges cast votes of guilty, and he or she is declared 
innocent otherwise. Suppose that when the defendant is, 
in fact, guilty, each judge will (independently) vote guilty 
with probability .7, whereas when the defendant is, in fact, 
innocent, this probability drops to .3. 

(a) What is the probability that a guilty defendant is 
declared guilty when there are (i) 9, (ii) 8, and (iii) 7 
judges? 
(b) Repeat part (a) for an innocent defendant. 
(c) If the prosecuting attorney does not exercise the right 
to a peremptory challenge of a judge, and if the defense 
is limited to at most two such challenges, how many chal
lenges should the defense attorney make if he or she is 60 
percent certain that the clien~ is guilty? 
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48. It is known that diskettes produced by a certain com
pany will be defective with probability .01, independently 
of one another. The company sells the diskettes in pack
ages of size 10 and offers a money-back guarantee that at 
most 1 of the 10 diskettes in the package will be defective. 
The guarantee is that the customer can return the entire 
package of diskettes if he or she finds more than 1 defec
tive diskette in it. If someone buys 3 packages, what is the 
probability that he or she will return exactly 1 of them? 

49. When coin 1 is flipped, it lands on heads with prob
ability .4; when coin 2 is flipped, it lands on heads with 
probability .7. One of these coins is randomly chosen and 
flipped 10 times. 
(a) What is the probability that the coin lands on heads on 
exactly 7 of the 10 flips? 
(b) Given that the first of these 10 flips lands heads, what 
is the conditional probability that exactly 7 of the 10 flips 
land on heads? 

50. Suppose that a biased coin that lands on heads with 
probability p is flipped 10 times. Given that a total of 6 
heads results, find the conditional probability that the first 
3 outcomes are 
(a) h, t, t (meaning that the first flip results in heads, the 
second in tails, and the third in tails); 
(b) t, h, t. 

51. The expected number of typographical errors on a 
page of a certain magazine is .2. What is the probability 
that the next page you read contains (a) 0 and (b) 2 or 
more typographical errors? Explain your reasoning! 

52. The monthly worldwide average number of airplane 
crashes of commercial airlines is 3.5. What is the probabil
ity that there will be~ 
(a) at least 2 such accidents in the next month; 
(b) at most 1 accident in the next month? 
Explain your reasoning! 

53. Approximately 80,000 marriages took place in the 
state of New York last year. Estimate the probability that 
for at least one of these couples, 
(a) both partners were born on April 30; 
(b) both partners celebrated their birthday on the same 
day of the year. 
State your assumptions. 

54. Suppose that the average number of cars abandoned 
weekly on a certain highway is 2.2. Approximate the prob
ability that there will be 
(a) no abandoned cars in the next week; 

equally likely to be typed by either typist, approximate the 
probability that it will have no errors. 

56. How many people are needed so that the probability 
that at least one of them has the same· birthday as you is 
greater than ! ? 

57. Suppose that the number of accidents occurring on 
a highway each day is a Poisson random variable with 
parameter A. = 3. 
(a) Find the probability that 3 or more accidents occur 
today. 
(b) Repeat part (a) under the assumption that at least 1 
accident occurs today. 

58. Compare the Poisson approximation with the correct 
binomial probability for the following cases: 

(a) P{X = 2} whenn = 8,p = .1; 
(b) P{X = 9} when n = 10, p = .95; 
(c) P{X = O} when n = 10, p = .1; 
(d) P{X = 4} whenn = 9,p = .2. 

59. If you buy a lottery ticket in 50 lotteries, in each of 
which your chance of winning a prize is 1lio , what is the 
(approximate) probability that you will win a prize 

(a) at least once? 
(b) exactly once? 
(c) at least twice? 

60. The number of times that a person contracts a cold in 
a given year is a Poisson random variable with parame
ter A. = 5. Suppose that a new wonder drug (based on 
large quantities of vitamin C) has just been marketed that 
reduces the Poisson parameter to A. = 3 for 75 percent of 
the population. For the other 25 percent of the population, 
the drug has no appreciable effect on colds. If an individ
ual tries the drug for a year and has 2 colds in that time, 
how likely is it that the drug is beneficial for him or her? 

61. The probability of being dealt a full house in a hand of 
poker is approximately .0014. Find an approximation for 
the probability that in 1000 hands of poker, you will be 
dealt at least 2 full houses. 

62. Consider n independent trials, each of which results 
in one of the outcomes 1, ... , k with respective probabil
ities Pi. ... ,pk, I:f=iPi = 1. Show that if all the Pi are 
small, then the probability that no trial outcome occurs 
more than once is approximately equal to exp(-n(n - 1) 
Li Pf /2). 

63. People enter a gambling casino at a rate of 1 every 2 
minutes. 

(b) at least 2 abandoned cars in the next week. (a) What is the probability that no one enters between 
55. A certain typing agency employs 2 typists. The average 12:00 and 12:05? 
number of errors per article is 3 when typed by the first (b) What is the probability that at least 4 people enter the 
typist and 4.2 when typed by the second. If your article is casino during that time? 
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64. The suicide rate in a certain state is 1 
100,000 inhabitants per month. 

suicide per each antiballistic missile independently hits its target with 

(a) Find the probability that in a city of 400,000 inhabitants 
within this state, there will be 8 or more suicides in a given 
month. 
(b) What is the probability that there will be at least 2 
months during the year that will have 8 or more suicides? 
(c) Counting the present month as month number 1, what 
is the probability that the first month to have 8 or more 
suicides will be month number i, i ~ 1? 
What assumptions are you making? 

65. Each of 500 soldiers in an army company indepen
dently has a certain disease with probability 1/103. This 
disease will show up in a blood test, and to facilitate mat
ters, blood samples from all 500 soldiers are pooled and 
tested. 

(a) What is the (approximate) probability that the blood 
test will be positive (that is, at least one person has the 
disease)? 

Suppose now that the blood test yields a positive result. 

(b) What is the probability, under this circumstance, that 
more than one person has the disease? 

Now, suppose one of the 500 people is Jones, who knows 
that he has the disease. 

( c) What does Jones think is the probability that more than 
one person has the disease? 

Because the pooled test was positive, the authorities have 
decided to test each individual separately. The first i - 1 
of these tests were negative, and the ith one-which was 
on Jones-was positive. 
(d) Given the preceding scenario, what is. the probability, 
as a function of i, that any of the remaining people have 
the disease? 

66. A total of 2n people, consisting of n married couples, 
are randomly seated (all possible orderings being equally 
likely) at a round table. Let Ci denote the event that 
the members of couple i are seated next to each other, 
i = 1, ... ,n. 
(a) Find P(Ci). 

(b) For j -:F i, find P(C;ICi). 
(c) Approximate the probability, for n large, that there 
are no married couples who are seated next to each 
other. 

67. Repeat the preceding problem when the seating is ran
dom but subject to the constraint that the men and women 
alternate. 

68. In response to an attack of 10 missiles, 500 antiballistic 
missiles are launched. The missile targets of the antiballis
tic missiles are independent, and each antiballstic missile 
is equally likely to go towards any of the target missiles. If 

probability .1, use the Poisson paradigm to approximate 
the probability that all missiles are hit. 

69. A fair coin is flipped 10 times. Find the probability that 
there is a string of 4 consecutive heads by 

(a) using the formula derived in the text; 
(b) using the recursive equations derived in the text. 
(c) Compare your answer with that given by the Poisson 
approximation. 

70. At time 0, a coin that comes up heads with prob
ability p is flipped and falls to the ground. Suppose it 
lands on heads. At times chosen according to a Poisson 
process with rate A., the coin is picked up and flipped. 
(Between these times, the coin remains on the ground.) 
What is the probability that the coin is on its head side at 
time t? 

Hint: What would be the conditional probability if there 
were no additional flips by time t, and what would it be if 
there were additional flips by time t? 

71. Consider a roulette wheel consisting of 38 numbers 1 
through 36, 0, and double 0. If Smith always bets that the 
outcome will be one of the numbers 1 through 12, what is 
the probability that 

(a) Smith will lose his first 5 bets; 
(b) his first win will occur on his fourth bet? 

72. Two athletic teams play a series of games; the first team 
to win 4 games is declared the overall winner. Suppose that 
one of the teams is stronger than the other and wins each 
game with probability .6, independently of the outcomes 
of the other games. Fmd the probability, for i = 4, 5, 6, 7, 
that the stronger team wins the series in exactly i games .. 
Compare the probability that the stronger team wins with 
the probability that it would win a 2-out-of-3 series. 

73. Suppose in Problem 72 that the two teams are evenly 
matched and each has probability ! of winning each game. 
Find the expected number of games played. 

74. An interviewer is given a list of people she can inter
view. If the interviewer needs to interview 5 people, and 
if each person (independently) agrees to be interviewed 
with probability ~, what is the probability that her list of 
people will enable her to obtain her necessary number 
of interviews if the list consists of (a) 5 people and (b) 8 
people? For part (b ), what is the probability that the inter
viewer will speak to exactly ( c) 6 people and ( d) 7 people 
on the list? 

75. A fair coin is continually flipped until heads appears 
for the 10th time. Let X denote the number of tails that 
occur. Compute the probability mass function of X. 

179 



180 

Random Variables 

76. Solve the Banach match problem (Example 8e) when 
the left-hand matchbox originally contained Ni matches 
and the right-hand box contained N2 matches. 

77. In the Banach matchbox problem, find the probabil
ity that at the moment when the first box is emptied (as 
opposed to being found empty), the other box contains 
exactly k matches. 

78. An um contains 4 white and 4 black balls. We ran
domly choose 4 balls. If 2 of them are white and 2 are 
black, we stop. If not, we replace the balls in the um and 
again randomly select 4 balls. This continues until exactly 
2 of the 4 chosen are white. What is the probability that we 
shall make exactly n selections? 

79. Suppose that a batch of 100 items contains 6 that are 
defective and 94 that are not defective. If Xis the number 
of defective items in a randomly drawn sample of 10 items 

, from the batch, find (a) P{X = 0} and (b) P{X > 2}. 

80. A game popular in Nevada gambling casinos is Keno, 
which is played as follows: 1\venty numbers are selected at 
random by the casino from the set of numbers 1 through 
80. A player can select from 1 to 15 numbers; a win occurs 
if some fraction of the player's chosen subset matches any 
of the 20 numbers drawn by the house. The payoff is a 
function of the number of elements in the player's selec
tion and the number of matches. For instance, if the player 
selects only 1 number, then he or she wins if this number is 
among the set of 20, and the payoff is $2.20 won for every 
dollar bet. (As the player's probability of winning in this 
case is i, it is clear that the "fair" payoff should be $3 won 
for every $1 bet.) When the player selects 2 numbers, a 
payoff (of odds) of $12 won for every $1 bet is made when 
both numbers are among the 20. 
(a) What would be the fair payoff in this case? 
Let P n, k denote the probability that exactly k of the n 
numbers chosen by the player are among the 20 selected 
by the house. 
(b) Compute P n, k 

(c) The most typical wager at Keno consists of selecting 10 
numbers. For such a bet, the casino pays off as shown in 
the following table. Compute the expected payoff: 

Theoretical Exercises 

I. There are N distinct types of coupons, and each time 
one is obtained it will, independently of past choices, be of 
type i with probability Pi, i = 1, ... , N. Let T denote the 
number one need select to obtain at least one of each type. 
Compute P{T = n}. 

Keno Payoffs in 10 Number Bets 

Number of matches 

0-4 
5 
6 
7 
8 
9 

10 

Dollars won for each $1 bet 

-1 
1 

17 
179 

1,299 
2,599 

24,999 

81. In Example 8i, what percentage of i defective lots does 
the purchaser reject? Find it for i = 1, 4. Given that a lot 
is rejected, what is the conditional probability that it con
tained 4 defective components? 

82. A purchaser of transistors buys them in lots of 20. It is 
his policy to randomly inspect 4 components from a lot and 
to accept the lot only if all 4 are nondefective. If each com
ponent in a lot is, independently, defective with probability 
.1, what proportion of lots is rejected? 

83. There are three highways in the county. The number of 
daily accidents that occur on these highways are Poisson 
random variables with respective parameters .3, .5, and .7. 
Find the expected number of accidents that will happen on 
any of these highways today. 

84. Suppose that 10 balls are put into 5 boxes, with each 
ball independently being put in box i with probability 

Pi, 2:r=1 Pi = 1. 

(a) Find the expected number of boxes that do not have 
any balls. 
(b) Find the expected number of boxes that have exactly 1 
ball. 

85. There are k types of coupons. Independently of the 
types of previously collected coupons, each new coupon 
collected is of type i with probability Pi, I:7=iPi = 1. 
If n coupons are collected, find the expected number of 
distinct types that appear in this set. (That is, find the 
expected number of types of coupons that appear at least 
once in the set of n coupons.) 

2. If X has distribution function F, what is the distribution 
function of eX? 

3. If X has distribution function F, what is the distribution 
function of the random variable a.X + f>, where a and f> 
are constants, a -::F O? 

Hint: Use an argument similar to the one used in Exam-
ple le. 4. The random variable Xis said to have the Yule-Simons 

distribution if 
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4 
P{X = n} = ( 1 2 , n 2: 1 

n n + )(n + ) 

(a) Show that the preceding is actually a probability mass 
function. That is, show that L~=l P{X = n} = 1. 
(b) Show that E[X) = 2. 
(c) Show that E[X2] = oo. 
Hint: For (a), first use that n(n+i\(n+2) = n(n\l) 

1 h h k 1 1 n(n+2)• t en use t at n(n+k) =ii - n+k· 

S. Let N be a nonnegative integer-valued random variable. 
For nonnegative values a;,j 2: 1, show that 

00 00 

~)a1 + ... + a;)P{N = j} = L a;P{N 2: i} 
j=l i=l 

Then show that 

00 

E[N] = LP{N 2: i} 

i=l 

and 
00 

E[N(N + 1)] = 2 LiP{N 2: i} 
i=l 

6. Let X be such that 

P{X=l}=p=l - P{X=-1} 

Find c "#- 1 such that E[c:X] = 1. 

7. Let X be a random variable having expected value µ 
and variance u2. Fmd the expected value and variance of 

8. Find Var(X) if 

X-µ 
Y=-

u 

P(X =a) = p = 1 - P(X = b) 

9. Show how the derivation of the binomial probabilities 

(n) . . P{X = i} = i p'(1 - p)n-i, i= o, ... ,n 

leads to a proof of the binomial theorem 

when x and y are nonnegative. 

Hint: Let p = x~y. 

IO. Let X be a binomial random variable with parameters 
n andp. Show that 

E [-1-] = 1 - (1 - p)n+l 
X + 1 (n + l)p 

11. Consider n independent sequential trials, each of 
which is successful with probability p. If there is a total 
of k successes, show that each of the n!/[k!(n - k)!] pos
sible arrangements of the k successes and n - k failures is 
equally likely. 

12. There are n components lined up in a linear arrange
ment. Suppose that each component independently func
tions with probability p. What is the probability that no 2 
neighboring components are both nonfunctional? 

13. Let X be a binomial random variable with parame
ters (n, p ). What value of p maximizes P{X = k}, k = 
0, 1, ... ,n? This is an example of a statistical method used 
to estimate p when a binomial (n, p) random variable is 
observed to equal k. If we assume that n is known, then 
we estimate p by choosing that value of p that maximizes 
P{X = k}. This is known as the meth..gd of maximum like
lihood estimation. 

14. A family has n children with probability apn,n 2: 1, 
where a s (1 - p)/p. 

(a) What proportion of families has no children? 
(b) If each child is equally likely to be a boy or a girl 
(independently of each other), what proportion of families 
consists of k boys (and any number of girls)? 

IS. Suppose that n independent tosses of a coin having 
probability p of coming up heads are made. Show that 
the probability that an even number of heads results is 
Ht + (q - pr], where q = 1 - p. Do this by proving 
and then utilizing the identity 

[n/2] n . . 1 
~ ( 2i )p2iqn-2i = 2 ((p + q)n + (q - p)n] 

where [n/2] is the largest integer less than or equal to n/2. 

16. Let X be a Poisson random variable with parameter 
A.. Show that P{X = i} increases monotonically and then 
decreases monotonically as i increases, reaching its maxi
mum when i is the largest integer not exceeding A.. 

Hint: Consider P{X = i}/P{X = i - 1}. 

17. Let X be a Poisson random variable with parameter A.. 

(a) Show that 

P{Xis even}=~ [1 + e-2'-] 

by using the result of Theoretical Exercise 15 and the rela
tionship between Poisson and binomial random variables. 
(b) Verify the formula in part (a) directly by making use of 
the expansion of e-'- + e'-. 
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18. Let X be a Poisson random variable with parameter>... 
What value of>.. maximizes P{X = k},k ~ O? 

19. Show that Xis a Poisson random variable with param
eter>.., then 

Now use this result to compute E[X3]. 

20. Consider n coins, each of which independently comes 
up heads with probability p. Suppose that n is large and p 
is small, and let>..= np. Suppose that all n coins are tossed; 
if at least one comes up heads, the experiment ends; if not, 
we again toss all n coins, and so on. That is, we stop the first 
time that at least one of the n coins come up heads. Let 
X denote the total number of heads that appear. Which 
of the following reasonings concerned with approximating 
P{X = 1} is correct (in all cases, Y is a Poisson random 
variable with parameter>..)? 

(a) Because the total number of heads that occur when all 
n coins are rolled is approximately a Poisson random vari
able with parameter >.., 

P{X = 1} ~ P{Y = l} = >..e-A 

(b) Because the total number of heads that occur when all 
n coins are rolled is approximately a Poisson random vari
able with parameter>.., and because we stop only when this 
number is positive, 

)..e-}. 
P{X = 1} ~ P{Y = liY > 0} = --, 

l-e-"' 

(c) Because at least one coin comes up heads, X will equal 
1 if none of the othet-n - 1 coins come up heads. Because 
the number of heads resulting from these n - 1 coins is 
approximately Poisson with mean (n - l)p ~ >.., 

P{X = 1} ~ P{Y = O} = e-A 

21. From a set of n randomly chosen people, let Eii denote 
the event that persons i and j have the same birthday. 
Assume that each person is equally likely to have any of 
the 365 days of the year as his or her birthday. Find 

(a) P(E3,4IE1,2); 

(b) P(E1,3IE1,2); 

(c) P(E2,3IE1,z n E1,3). 

What can you conclude from your answers to parts (a)-(c) 

about the independence of the ( ~ ) events Eij? 

22. An um contains 2n balls, of which 2 are numbered 1, 2 
are numbered 2, ... , and 2 are numbered n. Balls are suc
cessively withdrawn 2 at a time without replacement. Let 
T denote the first selection in which the balls withdrawn 
have the same number (and let it equal infinity if none of 

the pairs withdrawn has the same number). We want to 
show that, for 0 < a < 1, 

limP{T > an}= e-a/Z 
n 

To verify the preceding formula, let Mk denote the number 
of pairs withdrawn in the first k selections, k = 1, ... , n. 
(a) Argue that when n is large, Mk can be regarded as 
the number of successes in k (approximately) independent 
trials. 
(b) Approximate P{Mk = O} when n is large. 
(c) Write the event {T > an} in terms ofthe value of one 
of the variables Mk. 
(d) Verify the limiting probability given for P{T > an}. 

23. Consider a random collection of n individuals. In 
approximating the probability that no 3 of these individ
uals share the same birthday, a better Poisson approxima
tion than that obtained in the text (at least for values of n 
between 80 and 90) is obtained by letting Ei be the event 
that there are at least 3 birthdays on day i, i = 1, ... , 365. 

(a) Find P(Ei). 

(b) Give an approximation for the probability that no 3 
individuals share the same birthday. 
(c) Evaluate the preceding when n = 88 (which can be 
shown to be the smallest value of n for which the probabil
ity exceeds .5). 

24. Here is another way to obtain a set of recursive equa
tions for determining Pn, the probability that there is a 
string of k consecutive heads in a sequence of n flips of 
a fair coin that comes up heads with probability p: 

(a) Argue that fork < n, there will be a string of k con
secutive heads if either 

1. there is a string of k consecutive heads within the 
first n - 1 flips, or 

2. there is no string of k consecutive heads within the 
first n - k - 1 flips, flip n - k is a tail, and flips 
n - k + 1, ... ,n are all heads. 

(b) Using the preceding, relate Pn to Pn-1· Starting with 
Pk =pk, the recursion can be used to obtain Pk+t. then 
Pk+2• and so on, up to Pn. 

25. Suppose that the number of events that occur in a spec
ified time is a Poisson random variable with parameter >... 
If each event is counted with probability p, independently 
of every other event, show that the number of events that 
are counted is a Poisson random variable with parameter 
>..p. Also, give an intuitive argument as to why this should 
be so. As an application of the preceding result, suppose 
that the number of distinct uranium deposits in a given 
area is a Poisson random variable with parameter >.. = 10. 
If, in a fixed period of time, each deposit is discovered 
independently with probability -lo, find the probability 
that (a) exactly 1, (b) at least 1, and (c) at most 1 deposit 
is discovered during that time. 
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26. Prove 
n ),_i 1 loo '°' e->.._ = - e-xx"dx 

L.J i! n! >.. 
i=O 

Hint: Use integration by parts. 

27. If X is a geometric random variable, show analyti
cally that 

P{X = n + klX > n} = P{X = k} 

33. Repeat Theoretical Exercise 32, this time assuming 
that withdrawn chips are not replaced before the next 
selection. 

34. From a set of n elements, a nonempty subset is chosen 
at random in the sense that all of the nonempty subsets are 
equally likely to be selected. Let X denote the number of 
elements in the chosen subset. Show that for n large, 

n 
Var(X)""' -

4 

Using the interpretation of a geometric random variable, in the sense that the ratio Var(X) to n/4 approaches 1 as 
give a verbal argument as to why the preceding equation n approaches oo. Compare this formula with the limiting 
is true. form of Var(Y) when P{Y = i} = l/n, i = 1, ... , n. 
28. Let X be a negative binomial random variable with 
parameters r and p, and let Y be a binomial random vari
able with parameters n and p. Show that 

P{X > n} = P{Y < r} 

Hint: Either one could attempt an analytical proof of the 
preceding equation, which is equivalent to proving the 
identity 

. t ( ; = i ) p' (1 - Pi-' = t ( 7 ) 
1=n+l 1=0 

X pi(l - p)n-i 

or one could attempt a proof that uses the probabilistic 
interpretation of these random variables. That is, in the 
latter case, start by considering a sequence of independent 
trials having a common probability p of success. Then try 
to express the events {X > n} and {Y < r} in terms of the 
outcomes of this sequence. 

29. For a hypergeometric random variable, determine 

P{X = k + l}/P{X = k} 

30. Balls numbered 1 through N are in an um. Suppose 
that n,n s N, of them are randomly selected without 
replacement. Let Y denote the largest number selected. 
(a) Find the probability mass function of Y. 
(b) Derive an expression for E[Y] and then use Fermat's 
combinatorial identity to simplify the expression. 

31. A jar contains m + n chips, numbered 1, 2, ... , 
n + m. A set of size n is drawn. If we let X denote the 
number of chips drawn having numbers that exceed each 
of the numbers of those remaining, compute the probabil
ity mass function of X. 

32. A jar contains n chips. Suppose that a boy succes
sively draws a chip from the jar, each time replacing the 
one drawn before drawing another. The process continues 
until the boy draws a chip that he has previously drawn. 
Let X denote the number of draws, and compute its prob
ability mass function. 

35. An um initially contains one red and one blue ball. At 
each stage, a ball is randomly chosen and then replaced 
along with another of the same color. Let X denote the 
selection number of the first chosen ball that is blue. For 
instance, if the first selection is red and the second blue, 
then X is equal to 2. 

(a) Find P{X > i}, i ~ 1. 
(b) Show that with probability 1, a blue ball is eventually 
chosen. (That is, show that P{X < oo} = 1.) 
(c) Find E[X]. 

36. Suppose the possible values of X are {x;}, the possible 
values of Y are {yj}, and the possible values of X + Y are 
{Zk}. Let Ak denote the set of all pairs of indices (i,j) such 
that Xj + Yj = Zk; that is, Ak = {(i,J) : Xj + Yj = Zk}· 
(a) Argue that 

P{X + Y=Zk}= L P{X=Xj,Y=yj} 
(iJ)eAk 

(b) Show that 

E[X + Y] = L L (Xi + Yj)P{X = Xj, 
k (iJ)eAk 

y =Yj} 

(c) Using the formula from part (b), argue that 

E[X + Y] = LL(Xj + Yj)P{X =Xj, 
i j 

Y=yj} 

( d) Show that 

P(X =xi)= }:P(X =Xi, Y =Yi), 
j 

P(Y =Yi)= }:P{X =x;, Y =Jj} 

(e) Prove that 

E[X + Y] = E[X] + E[Y] 
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Self-Test Problems and Exercises 

I. Suppose that the random variable Xis equal to the num
ber of hits obtained by a certain baseball player in his 
next 3 at bats. If P{X = 1} = .3,P{X = 2} = .2, and 
P{X = O} = 3P{X = 3}, find E[X]. 

2. Suppose that X takes on one of the values 0, 1, and 2. If 
for some constant c,P{X = i} = cP{X = i - l},i = 1,2, 
find E[X]. 

3. A coin that when flipped comes up heads with proba
bility p is flipped until either heads or tails has occurred 
twice. Find the expected number of flips. 

4, A certain community is composed of m families, n; of 
r 

which have i children, I: n; = m. If one of the families is 
i=l 

randomly chosen, let X denote the number of children in 
r 

that family. If one of the I: in; children is randomly cho-
i=l 

sen, let Y denote the total number of children in the family 
of that child. Show that E[Y] ~ E[X]. 

S. Suppose that P{X = O} = 1 - P{X = l}. If E[X] = 
3Var(X), find P{X = 0}. 

6. There are 2 coins in a bin. When one of them is flipped, 
it lands on heads with probability .6, and when the other is 
flipped, it lands on heads with probability .3. One of these 
coins is to be randomly chosen and then flipped. Without 
knowing which coin is chosen, you can bet any amount up 
to $10, and you then either win that amount if the coin 
comes up heads or lose it if it comes up tails. Suppose, how
ever, that an insider is willing to sell you, for an amount 
C, the information as to which coin was selected. What is 
your expected payoff if you buy this information? Note 
that if you buy it and then bet x, you will end up either 
winning x - C or -x - C (that is, losing x + C in the lat
ter case). Also, for what values of C does it pay to purchase 
the information? 

7. A philanthropist writes a positive number x on a piece 
of red paper, shows the paper to an impartial observer, 
and then turns it face down on the table. The observer 
then flips a fair coin. If it shows heads, she writes the 
value 2x and, if tails, the value x/2, on a piece of blue 
paper, which she then turns face down on the table. With
out knowing either the value x or the result of the coin 
flip, you have the option of turning over either the red or 
the blue piece of paper. After doing so and observing the 
number written on that paper, you may elect to receive 
as a reward either that amount or the (unknown) amount 
written on the other piece of paper. For instance, if you 
elect to tum over the blue paper and observe the value 
100, then you can elect either to accept 100 as your reward 
or to take the amount (either 200 or 50) on the red paper. 

Suppose that you would like your expected reward to be 
large. 
(a) Argue that there is no reason to turn over the red 
paper first, because if you do so, then no matter what value 
you observe, it is always better to switch to the blue paper. 
(b) Let y be a fixed nonnegative value, and consider the 
following strategy: Tum over the blue paper, and if its 
value is at least y, then accept that amount. If it is less 
than y, then switch to the red paper. Let Ry(x) denote the 
reward obtained if the philanthropist writes the amount 
x and you employ this strategy. Find E[Ry(x)]. Note that 
E[Ro(x)] is the expected reward if the philanthropist writes 
the amount x when you employ the strategy of always 
choosing the blue paper. 

8. Let B(n, p) represent a binomial random variable with 
parameters n and p. Argue that 

P{B(n,p) :::s i} = 1 - P{B(n, 1 - p) :::s n - i - 1} 

Hint: The number of successes less than or equal to i is 
equivalent to what statement about the number of fail
ures? 

9. If Xis a binomial random variable with expected value 
6 and variance 2.4, find P{X = 5}. 

Io. An um contains n balls numbered 1 through n. If 
you withdraw m balls randomly in sequence, each time 
replacing the ball selected previously, find P{X = k}, k = 
1, ... ,m, where X is the maximum of the m chosen 
numbers. 
Hint: First find P{X ::5 k}. 

11. Teams A and B play a series of games, with the first 
team to win 3 games being declared the winner of the 
series. Suppose that team A independently wins each game 
with probability p. Find the conditional probability that 
teamA wins 
(a) the series given that it wins the first game; 
(b) the first game given that it wins the series. 

12. A local soccer team has 5 more games left to play. If 
it wins its game this weekend, then it will play its final 4 
games in the upper bracket of its league, and if it loses, 
then it will play its final games in the lower bracket. If it 
plays in the upper bracket, then it will independently win 
each of its games in this bracket with probability .4, and 
if it plays in the lower bracket, then it will independently 
win each of its games with probability .7. If the probability 
that the team wins its game this weekend is .5, what is the 
probability that it wins at least 3 of its final 4 games? 

13. Each of the members of a 7-judge panel independently 
makes a correct decision with probability .7. If the panel's 
decision is made by majority rule, what is the probability 
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that the panel makes the correct decision? Given that 4 of round of flips, and they continue to do so until there is an 
the judges agreed, what is the probability that the panel odd person. What is the probability that 
made the correct decision? (a) exactly 3 rounds of flips are made? 

(b) more than 4 rounds are needed? 
14. On average, 5.2 hurricanes hit a certain region in a 
year. What is the probability that there will be 3 or fewer 20. Show that if x is a geometric random variable with 
hurricanes hitting this year? parameter p, then 

IS. The number of eggs laid on a tree leaf by an insect of 
a certain type is a Poisson random variable with parame
ter A.. However, such a random variable can be observed 
only if it is positive, since if it is 0, then we cannot know 
that such an insect was on the leaf. If we let Y denote the 
observed number of eggs, then 

P{Y = i} = P{X = ilX > 0} 

where Xis Poisson with parameter A.. Find E[Y]. 

16. Each of n boys and n girls, independently and ran
domly, chooses a member of the other sex. If a boy and 
girl choose each other, they become a couple. Number the 
girls, and let Gi be the event that girl number i is part of a 
couple. Let Po = 1 - P(U?=t Gi) be the probability that no 
couples are formed. 
(a) What is P(Gi)? 
(b) What is P(GilGj)? 
(c) When n is large, approximate Po. 
(d) When n is large, approximate Pk, the probability that 
exactly k couples are formed. 
(e) Use the inclusion-exclusion identity to evaluate Po. 

17. A total of 2n people, consisting of n married couples, 
are randomly divided into n pairs. Arbitrarily number the 
women, and let Wi denote the event that woman i is paired 
with her husband. 
(a) Find P(Wi). 
(b) For i ¥- j, find P(WilWj). 
(c) When n is large, approximate the probability that no 
wife is paired with her husband. 
(d) If each pairing must consist of a man and a woman, 
what does the problem reduce to? 

18. A casino patron will continue to make $5 bets on red 
in roulette until she has won 4 of these bets. 
(a) What is the probability that she places a total of 9 
bets? 
(b) What are her expected winnings when she stops? 
Remark: On each bet, she will either win $5 with probabil
ity ~ or lose $5 with probability ~. 

19. When three friends go for coffee, they decide who will 
pay the check by each flipping a coin and then letting the 
"odd person" pay. If all three flips produce the same result 
(so that there is no odd person), then they make a second 

E[l/X] = -plog(p) 
1 - p 

Hint: You will need to evaluate an expression of the form 
00 

L, ai/i. To do so, write ai/i = J; xi-1dx, and then inter
i=l 
change the sum and the integral. 

21. Suppose that 

P{X =a} = p, P{X = b} = 1 - p 

(a) Show that !:§ is a Bernoulli random variable. 
(b) Find Var(X). 

22. Each game you play is a win with probability p. You 
plan to play 5 games, but if you win the fifth game, then 
you will keep on playing until you lose. 
(a) Find the expected number of games that you play. 
(b) Find the expected number of games that you lose. 

23. Balls are randomly withdrawn, one at a time without 
replacement, from an um that initially has N white and 
M black balls. Find the probability that n white balls are 
drawn before m black balls, n :::; N, m :::; M. 

24. Ten balls are to be distributed among 5 urns, with each 
ball going into urn i with probability Pi, L,~=l Pi = 1. 
Let Xi denote the number of balls that go into urn i. 
Assume that events corresponding to the locations of dif
ferent balls are independent. 
(a) What type of random variable is Xi? Be as specific as 
possible. 
(b) For i ¥- j, what type of random variable is Xi + Xj? 
(c) Find P{X1 + X2 + X3 = 7}. 

25. This problem has been intentionally omitted for this 
edition. 

26. Let a be the probability that a geometric random vari
able X with parameter p is an even number. 
(a) Find a by using the identity a = L,:1 P{X = 2i}. 
(b) Find a by conditioning on whether X = 1 or X > 1. 

27. The National Basketball Association championship 
series is a best of 7 series, meaning that the first team to 
win 4 games is declared the champion. In its history, no 
team has ever come back to win the championship series 
after being behind 3 games to 1. Assuming that each of 
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the games played in this year's se_ries is equally likely to be 
won by either team, independent of the results of earlier 
games, what is the probability that the upcoming champi
onship series will result in a team coming back from a 3 
games to 1 deficit to win the series? 

28. An urn has n white and m black balls. Balls are ran

variable X equal to the total number of balls that are 
withdrawn is said to be a negative hypergeometric random 
variable. 

(a) Explain how such a random variable differs from a 
negative binomial random variable. 
(b) Find P{X = r}. 

domly withdrawn, without replacement, until a total of Hint for (b): In order for X = r to happen, what must be 
k, k s; n white balls have been withdrawn. The random the results of the first r - 1 withdrawals? 

Answers to Selected Problems 

L p{4) = 6/91; p(2) = 8/91; p(l) = 32/91; p(O) = 17/5 27. A(p+l/10) 28. 3/5 3L p* 32. 11 -
1/91; p(-1) = 16/91; p(-2) = 28/91 4. (a) 1/2; 10(.9)10 33. 3 35. -.067; 1.089 37. 82.2; 84.S 
5/18; 5/36; 5/84; 5/252; 11252; O; O; O; 0 5. n - 2i; 39. 3/8 40. 111243 42. 2.8; 1.476 45. 3 50. 1/10; 
i = 0, ... , n 6. p(3) = p(-3) = 1/8; p(l) = p(-1) = 3/8 1110 5L e-·2; 1 - 1.2e-.2 53. 1 - e-·6; 1 - e-219.18 
12. p(4) = 1/16; p(3) = 1/8; p(2) = 1/16; p(O) = 1/2; 56. 253 57 • .5768; .6070 59 • .3935; .3033; .0902 
p(-i) = p(i); p(O) = 1 13. p(O) = .28; p(500) = 60 •. 8886 61 • .4082 63 •. 0821; .2424 65 • .3935; .2293; 
.27, p(1000) = .315; p(1500) = .09; p(2000) = .045 .3935 66. 2/(2n - 1); 2/(2n - 2); e-1 67. 2/n; 
14. p(O) = 1/2; p(l) = 1/6; p(2) = 1/12; p{3) = 1/20; (2n - 3)/(n - 1)2; e-2 68. e-10e-s 70. p + (1 - p)e-M 
p(4) = 1/5 17. 114; 1/6; 1112; 112 19. 1/2; 1/10; 115; 7L .1500; .1012 73. 5.8125 74. 32/243; 4864/6561; 
1110; 1/10 20 •. 5918; no; -.108 21. 39.28; 37 24. p = 160/729; 1601729 78. 18(17)n-1 /(35r 8L 3/10; 516; 
11/18; maximum = 23/72 25 • .46, 1.3 26. 1112; 75/138 82 • .3439 83. 1.5 

Solutions to Self-Test Problems and Exercises 

I. Since the probabilities sum to 1, we must have 
4P{X = 3} + .5 = 1, implying that P{X = 0} = .375, P{X = 
3} = .125. Hence, E[X] = 1(.3) + 2(.2) + 3(.125) = 1.075. 

Also, since there are ini children in families having i chil
dren, it follows that the probability that a randomly chosen 

T 

2. The relationship implies that Pi = dpo, i = 1, 2, where 
Pi = P{X = i}. Because these probabilities sum to 1, it 
follows that 

child is from a family with i children is inif L ini. There
i=l 

fore, 

T 

1 
p0(1 + c + c2) = 1 ~Po = 1 c2 

+c+ 
:~:)2ni 

E[Y] = i=; 
Hence, 

c + 2c2 
E[X] =P1 + 2p2 = l c2 +c+ 

L:ini 
i=l 

3. Let X be the number of flips. Then the probability mass Thus, we must show that 
function of Xis 

P2 = p 2 + (1 - p)2, p3 = 1 - P2 = 2p(1 - p) 

Hence, 

4, The probability that a randomly chosen family will have or, equivalently, that 
i children is nifm. Thus, 

T T T T T 

E[X] = L inif m L n; L i2ni ~ L ini Ljn; 
i=l j=l ' i=l i=l j=l 
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or, equivalently, that 

r r r r 

L~)2nini ~ LLijnini 
i=l j=l i=l j=l 

But, for a fixed pair i, j, the coefficient of nini in the left
side summation of the preceding inequality is i2 + p, 
whereas its coefficient in the right-hand summation is 2ij. 
Hence, it suffices to show that 

i2 + j2 ~ 2ij 

which follows because (i - 1)2 ~ 0. 

Finally, if 2x < y, then the blue paper will be rejected. 
Hence, in this case, the reward is x, so 

Ry(X) = x, if2x < y 

That is, we have shown that when the amount x is written 
on the red paper, the expected return under the y-policy is 

l x ifx < y/2 
E[Ry(x)] = 3x/2 if y/2 s x < 2y 

Sx/4 ifx ~ 2y 

8. Suppose that n independent trials, each of which results 
S. Let p = P{X = 1}. Then E[X] = p and Var(X) 
p(1 - p), so 

p = 3p(1 - p) 

implying that p = 2/3. Hence, P{X = 0} = 1/3. 

= in a success with probability p, are performed. Then the 
number of successes will be less than or equal to i if and 
only if the number of failures is greater than or equal to 
n - i. But since each trial is a failure with probability 1 - p, 
it follows that the number of failures is a binomial random 

6. If you wager x on a bet that wins the amount wagered 
with probability p and loses that amount with probability 
1 - p, then your expected winnings are 

xp - x(1 - p) = (2p - 1)x 

which is positive (and increasing in x) if and only if p > 1 /2. 
Thus, if p s 1/2, one maximizes one's expected return by 
wagering 0, and ifp > 1/2, one maximizes one's expected 
return by wagering the maximal possible bet. Therefore, 
if the information is that the .6 coin was chosen, then you 
should bet 10; if the information is that the .3 coin was cho
sen, then you should bet 0. Hence, your expected payoff is 

1 1 
2(1.2 - 1)10 + 2o - C=l - C 

Since your expected payoff is 0 without the information 
(because in this case the probability of winning is ~(.6) + 
!C.3) < 1/2), it follows that if the information costs less 
than 1, then it pays to purchase it. 

7. (a) If you turn over the red paper and observe the value 
x, then your expected return if you switch to the blue 
paper is 

2x(1/2) + x/2(1/2) = 5x/4 > x 

Thus, it would always be better to switch. 
(b) Suppose the philanthropist writes the amount x on the 
red paper. Then the amount on the blue paper is either 2x 
or x/2. Note that if x/2 ~ y, then the amount on the blue 
paper will be at least y and will thus be accepted. Hence, 
in this case, the reward is equally likely to be either 2x or 
x/2, so 

E[Ry(x)] = Sx/4, if x/2 ~ y 

If x/2 < y s 2x, then the blue paper will be accepted if its 
value is 2x and rejected if it is x/2. Therefore, 

E[Ry(x)] = 2x(1/2) + x(l/2) = 3x/2, if x/2 < y s 2x 

variable with parameters n and 1 - p. Hence, 

P{Bin(n,p) s i} = P{Bin (n, 1 - p) ~ n - i} 

= 1 - P{Bin (n, 1 - p) s n - i - 1} 

The final equality follows from the fact that the probabil
ity that the number of failures is greater than or equal to 
n - i is 1 minus the probability that it is less than n - i. 

9. Since E[X] = np, Var(X) = np(1 - p), we are given 
that np = 6,np(1 - p) = 2.4. Thus, 1 - p = .4, or 
p = .6, n = 10. Hence, 

( 10) 5 5 P{X = 5} = S (.6) (.4) 

10. Let Xi, i = 1, ... ,m, denote the number on the ith ball 
drawn. Then 

P{X s k} = P{X1 s k,X2 s k, ... ,Xm s k} 

= P{X1 s k}P{X2 s k} · · · P{Xm s k} 

= (~)m 

Therefore, 

(k)m (k l)m P{X = k} = P{Xsk}-P{Xsk-1} = ;; - -n-

11. (a) Given that A wins the first game, it will win the 
series if, from then on, it wins 2 games before team B wins 
3 games. Thus, 

4 

P{A winslA wins first}=?= ( ~) pi(1 - p)4-i 
1=2 
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~{~ . fi A . } _ P{A winslA wins first}P{A wins first} 
wms rstl wms - P{A wins} 

4 

~ (i)pi+l(l - p)4-i 
1=2 

12. To obtain the solution, condition on whether the team 
wins this weekend: 

4 4 

.5 ~ (i) (.4)i(.6)4-i + .5 ~ ( i) (.7)i(.3)4-i 
1=3 1=3 

13. Let C be the event that the jury makes the correct deci
sion, and let F be the event that four of the judges agreed. 
Then 

Also, 

P(CIF} = P(CF) 
P(F) 

- (n (.7)4(.3)3 

- (n (.7)4(.3)3 + (n (.7)3(.3)4 

=.7 

14. Assuming that the number of hurricanes can be 
approximated by a Poisson random variable, we obtain the 
solution 

3 

-L e-5.2<5.2)i /i! 
i=O 

00 

IS. E[Y] = L iP{X = i}/P{X > O} 
i=l 

= E[X]/ P{X > 0} 
). 

=---1 - e-J.. 

16. (a) l/n 

(c), (d) Because, when n is large, P(GilGj) is small 
and nearly equal to P(Gi), it follows from the Poisson 
paradigm that the number of couples is approximately 
Poisson distributed with mean I:l'.:1 P(Gi) = 1. Hence, 
Po i::::: e-1 and Pk i::::: e-1 /k! 
( e) To determine the probability that a given set of k girls 
all are coupled, condition on whether or not D occurs, 
where D is the event that they all choose different boys. 
This gives 

P(Gi1 · · · Gik) = P(Gi1 · · · GiklD)P(D) 

Therefore, 

+ P(Gi1 · · · Gik IDc}P(Dc) 

= P(Gi1 · · · GiklD)P(D) 

k n(n - 1) .. · (n - k + 1) = (1/n) k 
n 

n! 
- (n - k)!n2k 

. L. P(Gi1 ... Gik) = (~)P(Gi1 ... Gik) 
•1< ... <lk 

n!n! =-------...,,..,... (n - k)!(n - k)!k!n2k 

and the inclusion-exclusion identity yields 

n I I 
1 _ p, _ p n G- _ '\"" - l k+l n.n. 

o - (Ui=l ,) - ~( ) ( - k)I( - k)'k' 2k 
. k=l n . n . . n 

17. (a) Because woman i is equally likely to be paired with 
any of the remaining 2n - 1 people, P(Wi) = ~ 
(b) Because, conditional on Wj, woman i is equally likely 
to be paired with any of 2n - 3 people, P(WilWj) = ~ 
(c) When n is large, the number of wives paired with 
their husbands will approximately be Poisson with mean 
I:?=1 P(Wi) = 2n"_1 i::::: 1/2. Therefore, the probability that 
there is no such pairing is approximately e-112. 

(d) It reduces to the match problem. 

18. (a) (~) (9/19)3(10/19)5(9/19) = (~) (9/19)4(10/19)5 

(b) If W is her final winnings and X is the number of bets 
she makes, then, since she would have won 4 bets and lost 
X - 4 bets, it follows that 

(b) Let D be the event that girl i and girl j choose different 
boys. Then W = 20 - 5(X - 4) = 40 - 5X 

P(GiGj) = P(GiGilD)P(D) + P(GiGjlDc}P(Dc) Hence, 

Therefore, 

= (l/n)2(1 - l/n) E[W] = 40 - 5E[X] = 40 - 5[4/(9/19)] = -20/9 
n - 1 
=~ 19. The probability that a round does not result ih an "odd 

person" is equal to 1/4, the probability that all three coins 
land on the same side. 
(a) (1/4)2(3/4) = 3/64 

(b) (1/4)4 = 1/256 
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20. Letq = 1 - p. Then 

00 1 
E[l/X] = L -:qi-lp 

l i=l 
00 

p "'\' i;· = - L..,,q l 

q i=l 

00 loq =EL xi-ldx 
q i=l 0 

21. Since ~~ff will equal 1 with probability p or 0 with 
probability 1 - p, it follows that it is a Bernoulli random 
variable with parameter p. Because the variance of such a 
Bernoulli random variable is p(l - p), we have 

( x - b) 1 
p(l - p) =Var a _ b = (a _ b)2 Var(X - b) 

1 
= (a _ b )2 Var(X) 

Hence, 

Var(X) = (a - b)2p(l - p) 

22. Let X denote the number of games that you play and 
Y the number of games that you lose. 
(a) After your fourth game, you will continue to play until 
you lose. Therefore, X - 4 is a geometric random variable 
with parameter 1 - p, so 

1 
E[X] = E[4 + (X - 4)] = 4 + E[X - 4] = 4 + -1 --p 

(b) If we let Z denote the number of losses you have in the 
first 4 games, then Z is a binomial random variable with 
parameters 4 and 1 - p. Because Y = Z + 1, we have 

E[Y] = E[Z + 1] = E[Z] + 1 = 4(1 - p) + 1 

23. A total of n white balls will be withdrawn before a total 
of m black balls if and only if there are at least n white balls 
in the first n + m - 1 withdrawals. With X equal to the 
number of white balls among the first n + m - 1 balls 
withdrawn, Xis a hypergeometric random variable, and it 
follows that 

n+m-1 

P{X ~ n} = L P{X = i} 
i=n 

n+m-1 ( ~) ( n + m M_ 1 _ i) 
= ~ ( N+M ) 1-n 

- n+m-l 

24. Because each ball independently goes into um i with 
the same probability Pi, it follows that Xi is a binomial 
random variable with parameters n = 10, p =Pi· 

First note that Xi + Xj is the number of balls that go 
into either um i or urn j. Then, because each of the 10 balls 
independently goes into one of these urns with probabil
ity Pi + Pj. it follows that Xi + Xj is a binomial random 
variable with parameters 10 and Pi + Pj· 

By the same logic, X1 + X2 + X3 is a binomial random 
variable with parameters 10 and Pl + P2 + p3. Therefore, 

( 10) 7 3 P{X1 + X2 + X3 = 7} = 7 (p1 +-p2 + p3) (p4 + Ps) 

25. Let Xi equal 1 if person i has a match, and let it equal 
0 otherwise. Then 

is the number of matches. Taking expectations gives 

where the final equality follows because person i is equally 
likely to end up with any of the n hats. 

To compute Var(X), we use the following equation, 
which states that 

n n 

E[X2 ] = LE[Xi] + LLE[XiXj] 
i=l i=l f#i 

Now, for i "# j, 

E[XiXj] = P{Xi = 1, Xj = l} 

Hence, 

1 1 
= P{Xi = l}P{Xj = llXi = 1} = - -

n n - 1 

E[X2 ] = 1 + t L n n ~ 1 
i=l f#i ( ) 

1 
= 1 + n(n - 1) = 2 

n(n - 1) 

which yields 
Var(X) = 2 - 12 = 1 
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26. With q = 1 - p, we have, on the one hand, 

00 

P(E) = L P{X = 2i} 

i=l 
00 

= pq L:<q2)i-1 
i=l 

1 
=pq--

1 - q2 
pq q 

= (1 - q)(l + q) = 1 + q 

On the other hand, 

P(E) = P(EIX = l)p + P(EIX > l)q = qP(EIX > 1) 

However, given that the first trial is not a success, the 
number of trials needed for a success is 1 plus the geo
metrically distributed number of additional trials required. 
Therefore, 

P(EIX > 1) = P(X + 1 is even)= P(£C) = 1 - P(E) 

which yields P(E) = q/(1 + q). 

27. The probability that either team wins 3 of the first 4 

games is 2 ( j) (1/2)4 = 1/2. Because the team with only 

1 win would then have to win the following 3 games, the 
desired probability is 1/16. 

28. (a) The negative binomial represents the number of 
balls withdrawn in a similar experiment but with the 
exception that the withdrawn ball would be replaced 
before the next drawing. 
(b) Using the hint, we note that X = r if the first r - 1 
balls withdrawn contain exactly k - 1 white balls and the 
next withdrawn ball is white. Hence, 

(k~1)(,:Zk) n-k+l 
P(X = r) = , 

( n+m) n+m-r+l 
r - 1 

k'5,r'5,m+k 
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Introduction 
There are random variables whose set of possible values is either finite or countably 
infinite. However, there also exist random variables whose set of possible values is 
uncountable. 1\vo examples are the time that a train arrives at a specified stop and 
the lifetime of a transistor. Let X be such a random variable. We say that X is a 
continuous t random variable if there exists a nonnegative function/, defined for all 
real x E (-oo, oo), having the property that for any set B of real numbers,* 

P{X EB}= fat(x) dx (1.1) 

The function f is called the probability density function of the random variable X. 
(See Figure 1.) 

In words, Equation (1.1) states that the probability that X will be in B may be 
obtained by integrating the probability density function over the set B. Since X must 
assume some value, f must satisfy 

1 = P{X E (-00,00)} = j_:f(x) dx 

All probability statements about X can be answered in terms off. For instance, from 
Equation (1.1), letting B = [a,b], we obtain 

P{a s X s b} =lb f(x) dx (1.2) 

t Sometimes called absolutely continuous. 

*Actually, for technical reasons, Equation (1.1) is true only for the measurable sets B, which, fortunately, include 
all sets of practical interest. 

From Chapter 5 of A First Course in Probability, Ninth Edition. Sheldon Ross. 
Copyright© 2014 by Pearson Education, Inc. All rights reserved. 

191 



192 

Example 
Ia 

Example 
lb 

Continuous Random Variables 

a b 

P( a s X s b) = area of shaded region 

Figure I Probability density function/. 

If we let a = b in Equation (1.2), we get 

P{X =a} = 1a f(x) dx = 0 

In words, this equation states that the probability that a continuous random variable 
will assume any fixed value is zero. Hence, for a continuous random variable, 

P{X < a} = P{X ::5 a} = F(a) = j_~f(x) dx 

Suppose that X is a continuous random variable whose probability density function 
is given by 

f(x) - I C(4x - 2x2) 
- 0 

(a) What is the value of C? 
(b) Find P{X > l}. 

0 < x < 2 
otherwise 

Solution (a) Since f is a probability density function, we must have J~00f(x) dx = 1, 
implying that 

or 

or 

Hence, 

(b) P{X > l}=ftf(x)dx=~f{C4x - 2x2)dx=~ • 
The amount of time in hours that a computer functions before breaking down is a 
continuous random variable with probability density function given by 

I )..e-x/100 x ~ 0 
f(x) = 0 x < 0 
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What is the probability that 

(a) a computer will function between 50 and 150 hours before breaking down? 
(b) it will function for fewer than 100 hours? 

Solution (a) Since 

we obtain 

1 = loo f (x) dx = A {oo e-x/100 dx 
-oo Jo 

1 
1=->-(lOO)e-x/lOOI~=100>- or A= 100 

Hence, the probability that a computer will function between 50 and 150 hours 
before breaking down is given by 

P{50 < X < 150} = -e-x/100 dx = -e-x/1001150 1150 1 

~ 100 ~ 
= e-1/2 - e-3/2 ~ .383 

(b) Similarly, 

P{X < 100} = {100 _l_e-x/100 dx = -e-x/1001~00 = 1 - e-1 ~ .632 
lo 100 

In other words, approximately 63.2 percent of the time, a computer will fail before 
registering 100 hours of use. • 

The lifetime in hours of a certain kind of radio tube is a random variable having a 
probability density function given by 

{ 
0 x ::5 100 

f (x) = 100 x > 100 
x2 

What is the probability that exactly 2 of 5 such tubes in a radio set will have to 
be replaced within the first 150 hours of operation? Assume that the events Ei,i = 
1, 2, 3, 4, 5, that the ith such tube will have to be replaced within this time are 
independent. 

Solution From the statement of the problem, we have 

{150 
P(Ei) = lo f (x) dx 

[
150 

= 100 x-2 dx 
100 

1 
=-

3 

Hence, from the independence of the events Ei, it follows that the desired probabil
ity is 

• 
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The relationship between the cumulative distribution F and the probability den
sity f is expressed by 

F(a) = P{X E (-oo,a]} = j_~f(x)dx 
Differentiating both sides of the preceding equation yields 

d 
da F(a) = f (a) 

That is, the density is the derivative of the cumulative distribution function. A some
what more intuitive interpretation of the density function may be obtained from 
Equation (1.2) as follows: 

p {a - ~ $, x $. a + ~} = r+e/2 f (x) dx R:i ef (a) 
2 2 1a-ef2 

when e is small and whenf(·) is continuous at x =a. In other words, the probability 
that X will be contained in an interval of length e around the point a is approximately 
ef (a). From this result, we see that f (a) is a measure of how likely it is that the 
random variable will be near a. 

If Xis continuous with distribution function Fx and density function fx, find the 
density function of Y = 2X. 

Solution We will determine fy in two ways. The first way is to derive, and then dif
ferentiate, the distribution function of Y: 

Differentiation gives 

Fy(a) = P{Y s. a} 

= P{2X s. a} 

= P{X s. a/2} 

= Fx(a/2) 

1 
fy(a) = 2fx(a/2) 

Another way to determine fy is to note that 

Efy(a) R:: P {a - ~ s. Y s. a + ~} 

=P{a - ~ s.2xs.a + ~} 

=P{~ - i s.Xs. ~ + i} 
€ 

R:: 2fx(a/2) 

Dividing through by E gives the same result as before. • 
2 Expectation and Variance of Continuous Random Variables 

The expected value of a discrete random variable X is defined by 

E[X] = LxP{X = x} 
x 
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If Xis a continuous random variable having probability density function/(x), then, 
because 

f(x) dx ~ P{x :5 X :5 x + dx} for dx small 

it is easy to see that the analogous definition is to define the expected value of X by 

E[X] = 1_: xf (x) dx 

Find E[X] when the density function of Xis 

Solution 

{
2.xif 0:5x:51 

f(x) = 0 otherwise 

E[X] = J xf(x)dx 

=fol 2x2dx 

2 
=-

3 

The density function of X is given by 

Find E[eX']. 

{
1 if 0:5x:51 

f (x) = 0 otherwise 

• 

Solution Let Y = eX. We start by determining Fy, the cumulative distribution func
tion of Y. Now, for 1 :5 x :5 e, 

Fy(x) = P{Y :5 x} 

= P{~:::; x} 

= P{X :5 log(x)} 

lalog(x) 

= f(y)dy 
0 

= log(x) 

By differentiating Fy(x), we can conclude that the probability density function of Y 
is given by 

Hence, 

1 
fy(x) = -

x 

E[~] = E[Y] = 1_: xfy(x) dx 

= 1e dx 

=e-1 • 
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lemma 
2.1 

Continuous Random Variables 

Although the method employed in Example 2b to compute the expected value 
of a function of Xis always applicable, there is, as in the discrete case, an alternative 
way of proceeding. 

If Xis a continuous random variable with probability density function/(x), then, for 
any real-valued function g, 

E[g(X)] = 1_: g(x)f(x) dx 

An application of Proposition 2.1 to Example 2b yields 

E[e-¥] =fol tr dx since/(x) = 1, 0 < x < 1 

=e-1 

which is in accord with the result obtained in that example. 
The proof of Proposition 2.1 is more involved than that of its discrete random 

variable analog. We will present such a proof under the provision that the random 
variable g(X) is nonnegative. (The general proof, which follows the argument in the 
case we present, is indicated in Theoretical Exercises 2 and 3.) We will need the 
following lemma, which is of independent interest. 

For a nonnegative random variable Y, 

E[Y] = fo00 P{Y > y} dy 

Proof We present a proof when Y is a continuous random variable with probability 
density function fy. We have 

fo00 
P{Y > y} dy = fo00 ioo fy(x) dx dy 

where we have used the fact that P{Y > y} = fy00 fy(x) dx. Interchanging the order 
of integration in the preceding equation yields 

fo00 
P{Y > y} dy = fo00 (fox dy) fy(X) dx 

= fo00 
xfy(x) dx 

=E[Y] • 
Proof of Proposition 2.1 From Lemma 2.1, for any function g for which g(x) ;::::: 0, 

E[g(X)] = fo00 
P{g(X) > y} dy 

= roo r f (x) dx dy 
lo lx:g(x)>y 

= r rg(x) dy f(x) dx 
lx:g(x)>O lo 

= ( g(x)f(x) dx 
lx:g(X)>O 

which completes the proof. 
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A stick of length 1 is split at a point U having density function/(u) = 1, 0 < u < 1. 
Determine the expected length of the piece that contains the point p, 0 :s; p :s; 1. 

Solution Let Lp(U) denote the length of the substick that contains the point p, and 
note that 

{ 
1 - u 

Lp(U) = U 
u <p 
U>p 

(See Figure 2.) Hence, from Proposition 2.1, 

E[Lp(U)] = fo1 
Lp(u) du 

=fop (1 - u)du + Ll udu 

1 (1 - p)2 1 p2 
=2- 2 +2-2 

1 
= 2 + p(l - p) 

o ___ _.u __ .. p ___________ l (a) 

0 p u 1 (b) 

Figure 2 Substick containing pointp: (a) U < p; (b) U > p. 

Since p(l - p) is maximized when p = ! , it is interesting to note that the expected 
length of the substick containing the point p is maximized when p is the midpoint of 
the original stick. • 

Suppose that if you are s minutes early for an appointment, then you incur the cost , 
cs, and if you ares minutes late, then you incur the cost ks. Suppose also that the 
travel time from where you presently are to the location of your appointment is a 
continuous random variable having probability density function f. Determine the 
time at which you should depart if you want to minimize your expected cost. 

Solution Let X denote the travel time. If you leave t minutes before your appoint
ment, then your cost-call it C,(X)-is given by 

Therefore, 

{ 
c(t - X) if X :s; t 

C,(X) = k(X - t) ifX ~ t 

E[C,(X)] = fo00 
C,(x)f(x) dx 

= fo' c(t - x)f (x) dx + 100 
k(x - t)f (x) dx 

= ct {' f (x) dx - c {' xf (x) dx + k 100 xf (x) dx - kt 100 f (x) dx 
lo lo t . t 
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The value oft that minimizes E[C,(X)] can now be obtained by calculus. Differenti
ation yields 

d 
dtE[C,(X)] = ctf(t) + cF(t) - ctf(t) - ktf(t) + ktf(t) - k[l - F(t)] 

= (k + c)F(t) - k 

Equating the rightmost side to zero shows that the minimal expected cost is obtained 
when you leave t* minutes before your appointment, where t* satisfies 

F(t*) = -k k 
+c 

We can use Proposition 2.1 to show the following. 

If a and b are constants, then 

E[aX + b] = aE[X] + b 

• 

The proof of Corollary 2.1 for a continuous random variable X is the same as 
the one given for a discrete random variable. The only modification is that the sum 
is replaced by an integral and the probability mass function by a probability density 
function. 

The variance of a continuous random variable is defined exactly as it is for a 
discrete random variable, namely, if X is a random variable with expected value µ, 
then the variance of Xis defined (for any type of random variable) by 

Var(X) = E[(X - µ) 2] 

The alternative formula, 

Var(X) = E[X2] - (E[X])2 

is established in a manner similar to its counterpart in the discrete case. 

Find Var(X) for X as given in Example 2a. 

Solution We first compute E[X2]. 

E[X2] = L: x2f(x) dx 

=fol 2x3 dx 

Hence, since E[X] = ~,we obtain 

1 
Var(X) = -

2 

1 
2 

1 
18 

It can be shown that, for constants a and b, 

Var(aX + b) = a2Var(X) 

The proof mimics the one given for discrete random variables. 

• 

There are several important classes of continuous random variables that appear 
frequently in applications of probability; the next few sections are devoted to a study 
of some of them. 
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3 The Uniform Random Variable 
A random variable is said to be uniformly distributed over the interval (0, 1) if its 
probability density function is given by 

f(x) = { ~ 0 < x < 1 
otherwise (3.1) 

Note that Equation (3.1) is a density function, since /(x) ~ 0 and f~or:J(x) dx = 

JJ" dx = 1. Because f (x) > 0 only when x E (0, 1), it follows that X must assume a 
value in interval (0, 1). Also, since f(x) is constant for x E (0, 1), Xis just as likely to 
be near any value in (0, 1) as it is to be near any other value. To verify this statement, 
note that for any 0 < a < b < 1, 

P{a ::::;; X ::::;; b} = 1b f(x) dx = b - a 

In other words, the probability that Xis in any particular subinterval of (0, 1) equals 
the length of that subinterval. 

In general, we say that Xis a uniform random variable on the interval (a, /3) if 
the probability density function of X is given by 

{
_l_ ifa<X</3 

f(x) = /3 - a 
0 otherwise 

(3.2) 

Since F(a) = J~00f (x) dx, it follows from Equation (3.2) that the distribution func
tion of a uniform random variable on the interval (a, /3) is given by 

{ 

0 a::::;; a 
a - a 

F(a) = 
113 

_ a a < a < f3 

a~ /3 

Figure 3 presents a graph of/(a) and F(a). 

f(a) 

1 
fl-a 

(a) 

F(a) 

1 

(b) 

Figure 3 Graph of (a)/(a) and (b) F(a) for a uniform (a,/3) random variable. 

199 



200 

Example 
3a 

Example 
3b 

Example 
3c 
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Let X be uniformly distributed over (a, 13). Find (a) E[X] and (b) Var(X). 
Solution (a) 

E[X] = 1_: xf(x) dx 

= rf3 _x_dx 
la 13 - a 
132 - a2 

= 2(13 - a) 

13 + a 
= 

2 

In words, the expected value of a random variable that is uniformly distributed 
over some interval is equal to the midpoint of that interval. 

(b) To find Var(X), we first calculate E[X2]. 

Hence, 

E[X2] = {/3 _1 -x2 dx 
la 13 - a 
133 - a3 

= 3(13 - a) 

132 + al3 + a2 
= 

3 

132 + al3 + a2 
Var(X) = 3 

(13 - a)2 
= 

12 

(a + 13)2 

4 

Therefore, the variance of a random variable that is uniformly distributed over 
some interval is the square of the length of that interval divided by 12. • 

If Xis uniformly distributed over (0, 10), calculate the probability that (a) X < 3, 
(b) X > 6, and ( c) 3 < X < 8. 

[ 3 1 3 
Solution (a) P{X < 3} = lo 10 dx = 10 

[ 10 1 4 
(b) P{X > 6} = l 6 10 dx = 10 

[ 8 1 1 
(c) P{3 < X < 8} = l 3 10 dx = 2" • 

Buses arrive at a specified stop at 15-minute intervals starting at 7 A.M. That is, they 
arrive at 7, 7:15, 7:30, 7:45, and so on. If a passenger arrives at the stop at a time that 
is uniformly distributed between 7 and 7:30, find the probability that he waits 

(a) less than 5 minutes for a bus; 
(b) more than 10 minutes for a bus. 

Solution Let X denote the number of minutes past 7 that the passenger arrives at 
the stop. Since X is a uniform random variable over the interval (0, 30), it follows 
that the passenger will have to wait less than 5 minutes if (and only if) he arrives 
between 7:10 and 7:15 or between 7:25 and 7:30. Hence, the desired probability for 
part (a) is 
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115 1 130 1 1 
P{lO < X < 15} + P{25 < X < 30} = -3 dx + -3 dx = -

100 250 3 

Similarly, he would have to wait more than 10 minutes if he arrives between 7 and 
7:05 or between 7:15 and 7:20, so the probability for part (b) is 

1 
P{O < X < 5} + P{15 < X < 20} = 3 • 

The next example was first considered by the French mathematician Joseph 
L. F. Bertrand in 1889 and is often referred to as Bertrand's paradox. It represents 
our initial introduction to a subject commonly referred to as geometrical probability. 

Consider a random chord of a circle. What is the probability that the length of the 
chord will be greater than the side of the equilateral triangle inscribed in that circle? 

Solution As stated, the problem is incapable of solution because it is not clear what 
is meant by a random chord. To give meaning to this phrase, we shall reformulate 
the problem in two distinct ways. 

The first formulation is as follows: The position of the chord can be determined 
by its distance from the center of the circle. This distance can vary between 0 and 
r, the radius of the circle. Now, the length of the chord will be greater than the side 
of the equilateral triangle inscribed in the circle if the distance from the chord to 
the center of the circle is less than r/2. Hence, by assuming that a random chord 
is a chord whose distance D from the center of the circle is uniformly distributed 
between 0 and r, we see that the probability that the length of the chord is greater 
than the side of an inscribed equilateral triangle is 

P {n < !:.} = r/2 = ! 
2 r 2 

For our second formulation of the problem, consider an arbitrary chord of the 
circle; through one end of the chord, draw a tangent. The angle 0 between the chord 
and the tangent, which can vary from 0° to 180°, determines the position of the 
chord. (See Figure 4.) Furthermore, the length of the chord will be greater than 
the side of the inscribed equilateral triangle if the angle 0 is between 60° and 120°. 
Hence, assuming that a random chord is a chord whose angle 0 is uniformly dis
tributed between 0° and 180°, we see that the desired answer in this formulation is 

P{60 < 0 120} = 120 - 60 = ! 
< 180 3 

Note that random experiments could be performed in such a way that i or ~ would 
be the correct probability. For instance, if a circular disk of radius r is thrown on a 
table ruled with parallel lines a distance 2r apart, then one and only one of these 
lines would cross the disk and form a chord. All distances from this chord to the 

figure 4 
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center of the disk would be equally likely, so that the desired probability that the 
chord's length will be greater than the side of an inscribed equilateral triangle is i· 
In contrast, if the experiment consisted of rotating a needle freely about a point A 
on the edge (see Figure 4) of the circle, the desired answer would be~- • 

4 Normal Random Variables 
We say that Xis a normal random variable, or simply that Xis normally distributed, 
with parameters µ, and a 2 if the density of X is given by 

f (x) = _l_e-<x-µ,)2 /2u2 
..fiiia 

-OO<X<OO 

This density function .is a bell-shaped curve that is symmetric about µ,. (See 
Figure 5.) 

.399 

-3 -2 -1 0 1 

(a) 

2 3 

,.-Zu ,.. ii+2u 

(b) 

Figure S Normal density function: (a)µ,= O,a = 1; (b) arbitrary µ,,a 2. 

The normal distribution was introduced by the French mathematician Abra
ham DeMoivre in 1733, who used it to approximate probabilities associated with 
binomial random variables when the binomial parameter n is large. This result was 
later extended by Laplace and others and is now encompassed in a probability the
orem known as the central limit theorem. The central limit theorem, one of the two 
most important results in probability theory, t gives a theoretical base to the often 
noted empirical observation that, in practice, many random phenomena obey, at 
least approximately, a normal probability distribution. Some examples of random 
phenomena obeying this behavior are the height of a man or woman, the velocity 
in any direction of a molecule in gas, and the error made in measuring a physical 
quantity. 

t111e other is the strong law of large numbers. 
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To prove that/(x) is indeed a probability density function, we need to show'that 

_1_ 100 e-<x-µ)2/2a2 dx = 1 
..fiiia -oo 

Making the substitution y = (x - µ,)/a, we see that 

_1_ 100 e-<x-µ)2/2a2dx=_1_100 e-l/2 dy 
..fiiia -oo ../iii -oo 

Hence, we must show that 

1_: e-ll2 dy = ..(2;i 

Toward this end, let/= J~00 e-Y212 dy. Then 

12 = 1_: e-l 12dy1_: e-x2 /2 dx 

= 1_: 1_: e-(y2+x2)/2 dy dx 

We now evaluate the double integral by means of a chang~ of variables to polar 
coordinates. (That is, let x = r cos 0, y = r sin 0, and dy dx = r dO dr.) Thus, 

12 = 100 121r e_,:i 12, dO dr 

= 2ir 100 
re-r2f2dr 

2 -r212100 = - ire 0 

= 2ir 

Hence, I = ../iii, and the result is proved. 
An important fact about normal random variables is that if X is normally dis

tributed with parameters µ, and a 2 , then Y = aX + b is normally distributed with 
parameters aµ, + b and a2a 2• To prove this statement, suppose that a > 0. (The 
proof when a < 0 is similar.) Let Fy denote the cumulative distribution function of 
Y.Then 

Fy(x) = P{Y ::5 x} 

= P{aX + b ::5 x} 

=P{X::5x:b} 

=Fx(x: b) 
where F xis the cumulative distribution function of X. By differentiation, the density 
function of Y is then 

1 (x - b) fy(x) = a,fx -a-

= drr aa exp {- ( x : b - µ, )2 I 2a2} 

= drr exp{-(x - b - aµ,)2/2(aa)2} 
aa 

which shows that Y is normal with parameters aµ, + b and a2a 2• 
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An important implication of the preceding result is that if X is normally dis
tributed with parametersµ, and cr2 , then Z = (X - µ,)/er is normally distributed 
with parameters 0 and 1. Such a random variable is said to be a standard, or a unit, 
normal random variable. 

We now show that the parameters µ, and cr2 of a normal random variable repre
sent, respectively, its expected value and variance. 

Find E[X] and Var(X) when X is a normal random variable with parameters µ, 
and cr2. 

Solution Let us start by finding the mean and variance of the standard normal ran
dom variable Z = (X - µ,)/er. We have 

Thus, 

E[Z] = J.: xfz(x) dx 

= _1_ 100 xe-x2f2 dx 
,j2ii -oo 

= __ 1_e-x2/21oo 
,j2ii -oo 

=0 

Var(Z) = E[ Z2] 

= _1_ 100 x2e-x2f2 dx 
,j2ii -oo 

Integration by parts (with u = x and dv = xe-x2f2) now gives 

Var(Z) = - 1- (-xe-x2f21~ + 100 e-x2f2dx) 
,j2ii -00 

= _1 _ 100 e-x212 dx 
,j2ii -00 

=1 

Because X = µ, + er Z, the preceding yields the results 

E[X] = µ, + er E[Z] = µ, 

and 

Var(X) = cr2Var(Z) = cr2 • 
It is customary to denote the cumulative distribution function of a standard nor

mal random variable by <l>(x). That is, 

1 ix 2 <l>(x) = PC e-Y /2 dy 
v2.7r -oo 



Continuous Random Variables 

Table I Area <l>(x) Under the Standard Normal Curve to the Left of X . 

x .00 .01 .02 . 03 .04 .05 .06 .07 .08 .09 

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 

The values of <l>(x) for nonnegative x are given in Table 1. For negative values of x, 
<l>(x) can be obtained from the relationship 

<l>(-x) = 1 - <l>(x) -OO<X<OO (4.1) 

The proof of Equation (4.1), which follows from the symmetry of the standard nor
mal density, is left as an exercise. This equation states that if Z is a standard normal 
random variable, then 

P{Z s -x} = P{Z > x} -OO<X<OO 
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Since Z = (X - µ,)/a is a standard normal random variable whenever Xis normally 
distributed with parameters µ, and a 2 , it follows that the distribution function of X 
can be expressed as 

( X - µ, a - µ,) (a - µ,) Fx(a) = P{X ::::; a} = P a ::::; -a- = <l> -a-

If X is a normal random variable with parameters µ, = 3 and a 2 = 9, find 
(a) P{2 < X < 5}; (b) P{X > O}; (c) P{JX - 31 > 6}. 

Solution (a) 

(b) 

(c) 

P{X > 0} = P { X ~ 3 > O ; 3 } = P{Z > -1} 

=1 - <l>(-1) 

= <l>{l) 

::::::: .8413 

P{JX - 31 > 6} = P{X > 9} + P{X < -3} 

= p { x ~ 3 > 9 ; 3} + p { x ~ 3 < -3 3- 3} 

= P{Z > 2} + P{Z < -2} 

= 1 - <l>(2) + <l>(-2) 

= 2[1 - <l>{2)] 

::::::: .0456 • 
An examination is frequently regarded as being good (in the sense of determining 
a valid grade spread for those taking it) if the test scores of those taking the exami
nation can be approximated by a normal density function. (In other words, a graph 
of the frequency of grade scores should have approximately the bell-shaped form of 
the normal density.) The instructor often uses the test scores to estimate the normal 
parameters µ, and a 2 and then assigns the letter grade A to those whose test score 
is greater than µ, + a, B to those whose score is between µ, and µ, + a, .c to those 
whose score is between µ, - a and µ,, D to those whose score is between µ, - 2a 
and µ, - a, and F to those getting a score below µ, - 2a. (This strategy is sometimes 
referred to as grading "on the curve.") Since 
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P{X > µ, + a}=P{X ~ µ, > 1} =1 - <l>(l):::::; .1587 

P{µ, < X < µ, + a} = P { 0 < X ~ µ, < 1} = <l>(l) - <l>(O) :::::; .3413 

P{µ, - a < X < µ,} = P {-1 < X ~ µ, < O} 
= <l>(O) - <l>(-1) :::::; .3413 

P{µ, - 2a < X < µ, - er}= P {-2 < X ~ µ, < -1} 
= <1>(2) - <l>(l) :::::; .1359 

{x - µ, } P{X < µ, - 2cr} = P a < -2 = <l>(-2):::::; .0228 

it follows that approximately 16 percent of the class will receive an A grade on the 
examination, 34 percent a B grade, 34 percent a C grade, and 14 percent a D grade; 
2 percent will fail. • 

An expert witness in a paternity suit testifies that the length (in days) of human 
gestation is approximately normally distributed with parameters µ, = 270 and cr2 = 
100. The defendant in the suit is able to prove that he was out of the country during 
a period that began 290 days before the birth of the child and ended 240 days before 
the birth. If the defendant was, in fact, the father of the child, what is the probability 
that the mother could have had the very long or very short gestation indicated by 
the testimony? 

Solution Let X denote the length of the gestation, and assume that the defendant 
is the father. Then the probability that the birth could occur within the indicated 
period is 

P{X > 290 or X < 240} = P{X > 290} + P{X < 240} 

= p { x - 270 } p { x - 270 
10 > 2 + 10 

= 1 - <1>(2) + 1 - <1>(3) 

:::::; .0241 • 
Suppose that a binary message-either 0 or 1-must be transmitted by wire from 
location A to location B. However, the data sent over the wire are subject to a chan
nel noise disturbance, so, to reduce the possibility of error, the value 2 is sent over 
the wire when the message is 1 and the value -2 is sent when the message is 0. If 
x,x = ±2, is the value sent at location A, then R, the value received at location B, is 
given by R = x + N, where N is the channel noise disturbance. When the message 
is received at location B, the receiver decodes it according to the following rule: 

If R ;:;=:: .5, then 1 is concluded. 
If R < .5, then 0 is concluded. 

Because the channel noise is often normally distributed, we will determine the error 
probabilities when N is a standard normal random variable. 

Two types of errors can occur: One is that the message 1 can be incorrectly 
determined to be 0, and the other is that 0 can be incorrectly determined to be 1. 
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The first type of error will occur if the message is 1 and 2 + N < .5, whereas the 
second will occur if the message is 0 and -2 + N :::::: .5. Hence, 

P{errorlmessage is 1} = P{N < -1.5} 

= 1 - <1>(1.5) r::::! .0668 

and 

P{errorlmessage is O} = P{N :::::: 2.5} 

= 1 - <1>(2.5) r::::! .0062 • 
Value at Risk (VAR) has become a key concept in financial calculations. The VAR of 
an investment is defined as that value v such that there is only a 1 percent chance that 
the loss from the investment will be greater than v. If X, the gain from an investment, 
is a normal random variable with mean µ and variance a 2 , then because the loss is 
equal to the negative of the gain, the VAR of such an investment is that value v such 
that 

.01 = P{-X > v} 

Using that-Xis normal with mean-µ and variance a 2 , we see that 

.Ol = p {-X a+ µ > v : µ} 
=1-<I>(v:µ) 

Because, as indicated by Table 1, <1>(2.33) = .99, we see that 

v + µ = 2.33 
(J 

That is, 

v = VAR = 2.33a - µ 

Consequently, among a set of investments all of whose gains are normally distributed, 
the investment having the smallest VAR is the one having the largest value of 
µ - 2.33a. • 

4.1 The Normal Approximation to the Binomial Distribution 

An important result in probability theory known as the DeMoivre-Laplace limit 
theorem states that when n is large, a binomial random variable with parameters n 
and p will have approximately the same distribution as a normal random variable 
with the same mean and variance as the binomial. This result was proved originally 
for the special case of p = ~ by DeMoivre in 1733 and was then extended to general 
p by Laplace in 1812. It formally states that if we "standardize" the binomial by 
first subtracting its mean np and then dividing the result by its standard deviation 
Jnp(1 - p), then the distribution function of this standardized random variable 
(which has mean 0 and variance 1) will converge to the standard normal distribution 
function as n-+oo. 
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The DeMoivre-Laplace limit theorem 

If Sn denotes the number of successes that occur when n independent trials, each 
resulting in a success with probability p, are performed, then, for any a < b, 

as n--+oo. 

p la :S Sn - np :S b)--+<l>(b) - <l>(a) 
Jnp(l - p) 

Because the preceding theorem is only a special case of the central limit theo
rem, we shall not present a proof. 

Note that we now have two possible approximations to binomial probabilities: 
the Poisson approximation, which is good when n is large and p is small, and the 
normal approximation, which can be shown to be quite good when np(l - p) is 
large. (See Figure 6.) [The normal approximation will, in general, be quite good for 
values of n satisfying np(l - p) ;:::: 10.] 

Let X be the number of times that a fair coin that is flipped 40 times lands on heads. 
Find the probability that X = 20. Use the normal approximation and then compare 
it with the exact solution. 

Solution To employ the normal approximation, note that because the binomial is 
a discrete integer-valued random variable, whereas the normal is a continuous ran
dom variable, it is best to write P{X = i} as P{i - 1/2 < X < i + 1/2} before 

0.30 
(10, 0.7) 

0.20 
(20, 0.7) 

0.25 
0.15 

0.20 

0.15 0.10 

0.10 
0.05 

0.05 

0.0 0 2 4 6 8 10 0.0 0 5 
x x 

0.16 
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0.14 
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0.14 0.12 
0.12 0.10 
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0.08 
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Figure 6 The probability mass function of a binomial ( n, p) random variable becomes 
more and more "normal" as n becomes larger and larger. 
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applying the normal approximation (this is called the continuity correction). Doing 
so gives 

P{X = 20} = P{19.5 < X < 20.5} 

The exact result is 

= p { 19.5 - 20 < x - 20 < 
y'I6 y'I6 

~ P{-.16 < X ..fw20 < .161 

~ <I>(.16) - <I>(-.16) ~ .1272 

20.5 _ 20 I 
y'I6 

( 40) (1)40 
P{X = 20} = 20 z ~ .1254 • 

The ideal size of a first-year class at a particular college is 150 students. The college, 
knowing from past experience that, on the average, only 30 percent of those accepted 
for admission will actually attend, uses a policy of approving the applications of 450 
students. Compute the probability that more than 150 first-year students attend this 
college. 

Solution If X denotes the number of students who attend, then Xis a binomial ran
dom variable with parameters n = 450 and p = .3. Using the continuity correction, 
we see that the normal approximation yields 

P{X ;:::: 150.5} = p { x - (450)(.3) ;:::: 150.5 - (450)(.3) I 
y'450(.3)(.7) y'450(.3)(.7) 

~ 1 - <1>(1.59) 

~ .0559 

Hence, less than 6 percent of the time do more than 150 of the first 450 accepted 
actually attend. (What independence assumptions have we made?) • 

To determine the effectiveness of a certain diet in reducing the amount of cholesterol 
in the bloodstream, 100 people are put on the diet. After they have been on the diet 
for a sufficient length of time, their cholesterol count will be taken. The nutritionist 
running this experiment has decided to endorse the diet if at least 65 percent of the 
people have a lower cholesterol count after going on the diet. What is the proba
bility that the nutritionist endorses the new diet if, in fact, it has no effect on the 
cholesterol level? 

Solution Let us assume that if the diet has no effect on the cholesterol count, then, 
strictly by chance, each person's count will be lower than it was before the diet with 
probability !·Hence, if Xis the number of people whose count is lowered, then the 
probability that the nutritionist will endorse the diet when it actually has no effect 
on the cholesterol count is 

i~ ( l~O) (~) 100 = P{X ;:::: 64.5} 

=P ;:::: 2.9 I
x - (100)(!) } 

)100(~)(~) 
~ 1 - <1>(2.9) 

~ .0019 • 
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Fifty-two percent of the residents of New York City are in favor of outlawing cigarette 
smoking on university campuses. Approximate the probability that more than SO 
percent of a random sample of n people from New York are in favor of this prohibi
tion when 

(a) n = 11 
(b) n = 101 
(c) n = 1001 

How large would n have to be to make this probability exceed .9S? 

Solution Let N denote the number of residents of New York City. To answer the 
preceding question, we must first understand that a random sample of size n is a 

sample such that the n people were chosen in such a manner that each of the ( ~ ) 
subsets of n people had the same chance of being the chosen subset. Consequently, 
Sn, the number of people in the sample who are in favor of the smoking prohibition, 
is a hypergeometric random variable. That is, Sn has the same distribution as the 
number of white balls obtained when n balls are chosen from an urn of N balls, of 
which .S2N are white. But because N and .52N are both larg'e in comparison with 
the sample size n, it follows from the binomial approximation to the hypergeometric 
that the distribution of Sn is closely approximated by a binomial distribution with 
parameters n and p = .S2. The normal approximation to the binomial distribution 
then shows that 

Thus, 

P{Sn > S P{ Sn - .S2n 
. n} = > 

v'n(.S2)(.48) 

_ P { Sn - .52n > 
- v'n(.S2)(.48) 

Rj <l>(.04,Jn) 

.Sn - .S2n } 
v'n(.S2)(.48) 

-.04,Jn} 

{ 
<l>(.1328) = .SS28, if n = 11 

P{Sn > .Sn} Rj <l>(.4020) = .6S62, ~f n = 101 
<1>(1.266S) = .8973, if n = 1001 

In order for this probability to be at least .9S, we would need <l>(.04..jn) > .9S. 
Because <l>(x) is an increasing function and <1>(1.64S) = .9S, this means that 

.04,Jn > 1.64S 

or 
n ~ 1691.266 

That is, the sample size would have to be at least 1692. 

Historical notes concerning the normal distribution 

The normal distribution was introduced by the French mathematician Abra
ham DeMoivre in 1733. DeMoivre, who used this distribution to approximate 
probabilities connected with coin tossing, called it the exponential bell-shaped 
curve. Its usefulness, however, became truly apparent only in 1809, when the 
famous German mathematician Karl Friedrich Gauss used it as an integral part 
of his approach to predicting the location of astronomical entities. As a result, it 
became common after this time to call it the Gaussian.distribution. 

• 
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During the mid- to late 19th century, however, most statisticians started to 
believe that the majority of data sets would have histograms conforming to the 
Gaussian bell-shaped form. Indeed, it came to be accepted that it was "normal" 
for any well-behaved data set to follow this curve. As a result, following the lead 
of the British statistician Karl Pearson, people began referring to the Gaussian 
curve by calling it simply the normal curve. (A partial explanation as to why 
so many data sets conform to the normal curve is provided by the central limit 
theorem.) 

Abraham DeMoivre ( 1667-1754) 

Today there is no shortage of statistical consultants, many of whom ply their 
trade in the most elegant of settings. However, the first of their breed worked, 
in the early years of the 18th century, out of a dark, grubby betting shop in 
Long Acres, London, known as Slaughter's Coffee House. He was Abraham 
DeMoivre, a Protestant refugee from Catholic France, and, for a price, he would 
compute the probability of gambling bets in all types of games of chance. 

Although DeMoivre, the discoverer of the normal curve, made his living at 
the coffee shop, he was a mathematician of recognized abilities. Indeed, he was 
a member of the Royal Society and was reported to be an intimate of Isaac 
Newton. 

Listen to Karl Pearson imagining DeMoivre at work at Slaughter's Coffee 
House: "I picture DeMoivre working at a dirty table in the coffee house with a 
broken-down gambler beside him and Isaac Newton walking through the crowd 
to his corner to fetch out his friend. It would make a great picture for an inspired 
artist." 

Karl Friedrich Gauss 

Karl Friedrich Gauss (1777-1855), one of the earliest users of the normal curve, 
was one of the greatest mathematicians of all time. Listen to the words of the 
well-known mathematical historian E. T. Bell, as expressed in his 1954 book 
Men of Mathematics: In a chapter entitled "The Prince of Mathematicians," he 
writes, "Archimedes, Newton, and Gauss; these three are in a class by themselves 
among the great mathematicians, and it is not for ordinary mortals to attempt to 
rank them in order of merit. All three started tidal waves in both pure and applied 
mathematics. Archimedes esteemed his pure mathematics more highly than its 
applications; 
Newton appears to have found the chief justification for his mathematical inven
tions in the scientific uses to which he put them; while Gauss declared it was all 
one to him whether he worked on the pure or on the applied side." 

5 Exponential Random Variables 
A continuous random variable whose probability density function is given, for some 
J.. > O,by 

f( ) - I J..e->..x if x ;;::: 0 
X- 0 ifx<O 

is said to be an exponential random variable (or, more simply, is said to be exponen
tially distributed) with parameter J... The cumulative distribution function F(a) of an 
exponential random variable is given by 



Example 
Sa 

Example 
Sb 

Continuous Random Variables 

F(a) = P{X ::::; a} 

= foa >..e-A.x dx 

= -e-A.xl~ 

= 1 - e->..a a~ 0 

Note that F(oo) =ff{° >..e->..x dx = 1, as, of course, it must. The parameter>.. will now 
be shown to equal the reciprocal of the expected value. 

Let X be an exponential random variable with parameter>... Calculate (a) E[X] and 
(b) Var(X). 

Solution (a) Since the density function is given by 

f (x) = { ~e-A.x ~ ~ ~ 
we obtain, for n > 0, 

E[Xn] = fooo ~)..e-A.x dx 

Integrating by parts (with >..e-4 = dv and u = xn) yields 

E[Xn] = -xne-A.xlo + koo e-A.xnxn-1 dx 

= 0 + !:. roo >..e-Ax~-1 dx 
>..Jo 

= !:. E[xn-1] 
>.. 

Letting n = 1 and then n = 2 gives 

E[X] = ~ 
2 2 2 

E[X] = -E[X] = 2 >.. >.. 

(b) Hence, 

Var(X) = ~ - (!)2 = _!_ 
>.,2 >.. >.,2 

Thus, the mean of the exponential is the reciprocal of its parameter A., and the vari
ance is the mean squared. • 

In practice, the exponential distribution often arises as the distribution of the 
amount of time until some specific event occurs. For instance, the amount of time 
(starting from now) until an earthquake occurs, or until a new war breaks out, or 
until a telephone call you receive turns out to be a wrong number are all random 
variables that tend in practice to have exponential distributions. 

Suppose that the length of a phone call in minutes is an exponential random variable 
with parameter >.. = /o. If someone arrives immediately ahead of you at a public 
telephone booth, find the probability that you will have to wait 

(a) more than 10 minutes; 
(b) between 10 and 20 minutes. 
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Solution Let X denote the length of the call made by the person in the booth. Then 
the desired probabilities are 

(a) 

(b) 

P{X > 10} = 1 - F(lO) 

= e-1 ~ .368 

P{lO < X < 20} = F(20) - F(lO) 

= e-1 - e-2 ~ .233 

We say that a nonnegative random variable Xis memoryless if 

P{X > s + t!X > t}=P{X > s} foralls,t;;::: 0 

• 
(5.1) 

If we think of X as being the lifetime of some instrument, Equation (5.1) states that 
the probability that the instrument survives for at least s + t hours, given that it has 
survived t hours, is the same as the initial probability that it survives for at least 
s hours. In other words, if the instrument is alive at age t, the distribution of the 
remaining amount of time that it survives is the same as the original lifetime distri
bution. (That is, it is as if the instrument does not "remember" that it has already 
been in use for a time t.) 

or 

Equation (5.1) is equivalent to 

P{X > s + t,X > t} = P{X > s} 
P{X > t} 

P{X > s + t} = P{X > s}P{X > t} (5.2) 

Since Equation (5.2) is satisfied when Xis exponentially distributed (for e-A(s+t) = 
e-Ase-M), it follows that exponentially distributed random variables are memoryless. 

Consider a post office that is staffed by two clerks. Suppose that when Mr. Smith 
enters the system, he discovers that Ms. Jones is being served by one of the clerks 
and Mr. Brown by the other. Suppose also that Mr. Smith is told that his service will 
begin as soon as either Ms. Jones or Mr. Brown leaves. If the amount of time that 
a clerk spends with a customer is exponentially distributed with parameter >.., what 
is the probability that of the three customers, Mr. Smith is the last to leave the post 
office? 

Solution The answer is obtained by reasoning as follows: Consider the time at which 
Mr. Smith first finds a free clerk. At this point, either Ms. Jones or Mr. Brown would 
have just left, and the other one would still be in service. However, because the 
exponential is memoryless, it follows that the additional amount of time that this 
other person (either Ms. Jones or Mr. Brown) would still have to spend in the post 
office is exponentially distributed with parameter >... That is, it is the same as if service 
for that person were just starting at this point. Hence, by symmetry, the probability 
that the remaining person finishes before Smith leaves must equal~- • 

It turns out that not only is the exponential distribution memoryless; but it is 
also the unique distribution possessing this property. To see this, suppose that X is 
memoryless and let F(x) = P{X > x}. Then, by Equation (5.2), 

F(s + t) = F(s)F(t) 
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That is, F(-) satisfies the functional equation 

g(s + t) = g(s)g(t) 

However, it turns out that the only right continuous solution of this functional 
equation is t 

g(x) = e-4 (5.3) 

and, since a distribution function is always right continuous, we must have 

F(x) = e-4 or F(x) = P{X :S x} = 1 - e-4 

which shows that Xis exponentially distributed. 

Suppose that the number of miles that a car can run before its battery wears out is 
exponentially distributed with an average value of 10,000 miles. If a person desires 
to take a 5000-mile trip, what is the probability that he or she will be able to com
plete the trip without having to replace the car battery? What can be said when the 
distribution is not exponential? 

-
Solution It follows by the memoryless property of the exponential distribution that 
the remaining lifetime (in thousands of miles) of the battery is exponential with 
parameter A. = fa. Hence, the desired probability is 

P{remaining lifetime > 5} = 1 - F(5) = e-5>. = e-112 ~ .607 

However, if the lifetime distribution Fis not exponential, then the relevant proba
bility is 

P l.f . 5 l'f . } 1 - F(t + 5) 
{ i etlme > t + I i etime > t = 1 - F(t) 

where t is the number of miles that the battery had been in use prior to the start of 
the trip. Therefore, if the distribution is not exponential, additional information is 
needed (namely, the value oft) before the desired probability can be calculated. • 

A variation of the exponential distribution is the distribution of a random vari
able that is equally likely to be either positive ?r negative and whose absolute value 
is exponentially distributed with parameter A., A. ;:::; 0. Such a random variable is said 
to have a Laplace distribution,* and its density is given by 

-OO<X<OO 

t One can prove Equation (5.3) as follows: If g(s + t) = g(s)g(t), then 

and repeating this yields g(m/n) = g"'(l/n). Also, 

Hence, g(m/n) = (g(l))mfn, which, since g is right continuous, implies that g(x) = (g(lW. Because g(l) = 

( g ( n y 2: 0, we obtain g(x) = e-i.x, where >. = - log(g(l) ). 

*1t also is sometimes called the double exponential random variable. 
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Its distribution function is given by 

- >..i?-Y dy X < 0 
2 -oo 1
1 fx 

F(x) -- 1 0 1 x -f >..i?-Y dy + - { >..e-A.y dy x > 0 
2 -oo 2 lo 

{ 
!eAx x < 0 

~ ~ - ~·-'-' x > 0 

Consider again Example 4e, which supposes that a binary message is to be transmit
ted from A to B, with the value 2 being sent when the message is 1 and -2 when it 
is 0. However, suppose now that rather than being a standard normal random vari
able, the channel noise N is a Laplacian random variable with parameter >.. = 1. 
Suppose again that if R is the value received at location B, then the message is 
decoded as follows: 

If R ~ .5, then 1 is concluded. 

If R < .5, then 0 is concluded. 

In this case, where the noise is Laplacian with parameter >.. = 1, the two types of 
errors will have probabilities given by 

P{errorlmessage 1 is sent}= P{N < -1.5} 

= !e-1.5 
2 

~ .1116 

P{errorlmessage 0 is sent} = P{N ~ 2.5} 

= !e-2.5 
2 

~ .041 

On comparing this with the results of Example 4e, we see that the error probabilities 
are higher when the noise is Laplacian with >.. = 1 than when it is a standard normal 
variable. 

5.1 Hazard Rate Functions 

Consider a positive continuous random variable X that we interpret as being the 
lifetime of some item. Let X have distribution function F and density f. The hazard 
rate (sometimes called the failure rate) function >..(t) of Fis defined by 

>..(t) = ~(t) , where F = 1 - F 
F(t) 

To interpret >..(t), suppose that the item has survived for a time t and we desire the 
probability that it will not survive for an additional time dt. That is, consider P{X E 

(t,t + dt)IX > t}. Now, 
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P{x ( d Ix P{X e (t,t + dt),X > t} 
E t,t + t) > t} = p 

{X > t} 
P{X e (t, t + dt)} 

= P{X > t} 

~ ~(t) dt 
F(t) 

Thus, >..(t) represents the conditional probability intensity that a t-unit-old item will 
fail. 

Suppose now that the lifetime distribution is exponential. Then, by the memory
less property, it follows that the distribution of remaining life for a t-year-old item is 
the same as that for a new item. Hence, >..(t) should be constant. In fact, this checks 
out, since 

>..(t) = ~(t) 
F(t) 
>..e-i..t 

= e-i..t 

=>.. 

Thus, the failure rate function for the exponential distribution is constant. The param
eter >.. is often referred to as the rate of the distribution. 

It turns out that the failure rate function >..(s), s =::: 0, uniquely determines the 
distribution function F. To prove this, we integrate >..(s) from 0 to t to obtain 

f' >..(s)ds = f' 1 /(s) ds 
lo lo - F(s) 

= -log(l - F(s))I~ 

= -log(l - F(t)) + log(l - F(O)) 

= - log(l - F(t)) 

where the second equality used that f (s) = .JsF(s) and the final equality used that 
F(O) = 0. Solving the preceding equation for F(t) gives 

F(t) = 1 - exp {-lot >..(s) ds} (5.4) 

Hence, a distribution function of a positive continuous random variable can be 
specified by giving its hazard rate function. For instance, if a random variable has a 
linear hazard rate function- that is, if 

>..(t) =a + bt 

then its distribution function is given by 

F(t) = 1 - e-at-bt2 /2 

and differentiation yields its density, namely, 
f(t) = (a + bt)e-(at+bt2 /2) t =::: 0 

When a = 0, the preceding equation is known as the Rayleigh density function. 

One often hears that the death rate of a person who smokes is, at each age, twice that 
of a nonsmoker. What does this mean? Does it mean that a nonsmoker has twice the 
probability of surviving a given number of years as does a smoker of the same age? 
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Solution If As(t) denotes the hazard rate of a smoker of age t and An(t) that of a 
nonsmoker of age t, then the statement at issue is equivalent to the statement that 

The probability that an A-year-old nonsmoker will survive until age B, A < B, is 

P{A-year-old nonsmoker reaches age B} 

= P{nonsmoker's lifetime > Blnonsmoker's lifetime > A} 

1 - Fnon(B) 
= 

1 - Fnon(A) 

exp {- foB An(t) dt} 

= 
exp {- foA An(t) dt} 

= exp {- LB An (t) dt} 

from (5.4) 

whereas the corresponding probability for a smoker is, by the same reasoning, 

P{A-year-old smoker reaches age B} = exp {- LB As(t) dt} 

=exp {-z LB An(t) dt} 

= [··+ L" An(t)&}]' 

In other words, for two people of the same age, one of whom is a smoker and 
the other a nonsmoker, the probability that the smoker survives to any given age 
is the square (not one-half) of the corresponding probability for a nonsmoker. For 
instance, if An (t) = /a, 50 :5 t :5 60, then the probability that a 50-year-old nonsmoker 
reaches age 60 is e-113 ~ .7165, whereas the corresponding probability for a smoker 
is e-213 ~ .5134. • 

6 Other Continuous Distributions 

6.1 The Gamma Distribution 

A random variable is said to have a gamma distribution with parameters (a, A), A > 0, 
a > 0, if its density function is given by 

f(x) = r(a) 
x~O { 

Ae-A.x()..x)a-1 

0 x < 0 

where r(a), called the gamma function, is defined as 

r(a) = roo e-yya-1 dy 
Jo . 
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Integration of 1(a) by parts yields 

1(a) = -e-yya-11: + looo e-Y(a - 1)ya-2 dy 

= (a 1) 100 e-Yya-Z dy (6.1) 

= (a 1)f'(a - 1) 

For integral values ofo, say, a= n, we obtain, by applying Equation (6.1) repeatedly, 

f'(n) = (n - 1)1(n - 1) 

= (n - 1)(n - 2)1(n - 2) 

=··· 
= (n - 1)(n - 2) · · · 3 · 21(1) 

Since 1(1) = J~ e-x dx = 1, it follows that, for integral values of n, 

1(n) = (n - 1)! 

When a is a positive integer, say, a = n, the gamma distribution with parameters 
(a, A) often arises, in practice as the distribution of the amount of time one has to 
wait until a total of n events has occurred. More specifically, if events are occurring 
randomly, then it turns out that the amount of time one has to wait until a total of 
n events has occurred will be a gamma random variable with parameters (n, A). To 
prove this, let Tn denote the time at which the nth event occurs, and note that Tn is 
less than or equal to t if and only if the number of event~ that have occurred by time 
tis at least n. That,is, with N(t) equal to the number of events in (0, t], 

P{Tn ==:; t} = P{N(t) ;:::: n} 
00 

= L P{N(t) = j} 
j=n 

00 e-1..t(uy 
=I: ., 

. l· 
J=n 

where the final identity follows because the number of events in (0, t] has a 
Poisson distribution with parameter At. Differentiation of the preceding now yields 
the density function of Tn: 

Hence, Tn has the gamma distribution with parameters (n, A). (This distribution is 
often referred to in the literature as then-Erlang distribution.) Note that when n = 1, 
this distribution reduces to the exponential distribution. 

The gamma distribution with A = ~ and a = n/2, n a positive integer, is called 
the x; (read "chi-squared") distribution with n degrees of freedom. The chi-squared 
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distribution often arises in practice as the distribution of the error involved in 
attempting to hit a target in n-dimensional space when each coordinate error is nor
mally distributed. 

Let X be a gamma random variable with parameters a and A.. Calculate (a) E[X] 
and (b) Var(X). 

Solution (a) 

A.r(a) 
a 

by Equation (6.1) 

(b) By first calculating E[X2], we can show that 

The details are left as an exercise. 

a 
Var(X) = A.2 

6.2 The Weibull Distribution 

• 

The Weibull distribution is widely used in engineering practice due to its versatil
ity. It was originally proposed for the interpretation of fatigue data, but now its use 
has been extended to many other engineering problems. In particular, it is widely 
used in the field of life phenomena as the distribution of the lifetime of some object, 
especially when the "weakest link" model is appropriate for the object. That is, con
sider an object consisting of many parts, and suppose that the object experiences 
death (failure) when any of its parts fails. It has been shown (both theoretically 
and empirically) that under these conditions, a Weibull distribution provides a close 
approximation to the distribution of the lifetime of the item. 

The Weibull distribution function has the form 

F(x)= { O I (x - v)f3) 1 - exp - -
a 

x :5 v 

(6.2) 
x > v 

A random variable whose cumulative distribution function is given by Equation (6.2) 
is said to be a Weibull random variable with parameters v, a, and {3. Differentiation 
yields the density: 

f(x) = { ~ (, : , r exp H, : , ) , I 
x :5 v 

x > v 
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6.3 The Cauchy Distribution 

A random variable is said to have a Cauchy distribution with parameter e, 
-00 < e < 00, if its density is given by 

1 1 
f (x) = ; 1 + (x - e)2 -OO<X<OO 

Suppose that a narrow-beam flashlight is spun around its center, which is located 
a unit distance from the x-axis. (See Figure 7.) Consider the point X at which the 
beam intersects the x-axis when the flashlight has stopped spinning. (If the beam is 
not pointing toward the x-axis, repeat the experiment.) 

x 

Figure 7 

As indicated in Figure 7, the point Xis determined by the angle e between the 
flashlight and the y-axis, which, from the physical situation, appears to be uniformly 
distributed between -rr /2 and rr /2. The distribution function of X is thus given by 

F(x) = P{X :5 x} 

= P{tane :5 x} 

= P{e :5 tan-1 x} 

1 1 = - + - tan-1 x 
2 rr 

where the last equality follows since e, being uniform over ( - rr /2, rr /2), has 
distribution 

a - (-rr/2) 1 a 
P{e :5 a) = rr = 2 + rr 

rr rr 
<a< 

2 2 

Hence, the density function of X is given by 

d 1 
f(x) = dx F(x) = rr(l + x2) -OO < X < OO 

and we see that X has the Cauchy distribution.t • 
tThat 1,(tan- 1x) = 1/(1 + x2) can be seen as follows: If y = tan- 1 x, then tany = x, so 

d d dy d(siny)dy (cos2y+sin2y)dy 1 = - (tany) = - (tany) - = - - - = 2 -
dx dy dx dy cosy dx cos y dx 

or 
dy cos2 y 
dx = sin2 y + cos2 y = tan2 y + 1 = x2 + 1 
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6.4 The Beta Distribution 

A random variable is said to have a beta distribution if its density is given by 

where 

{
- 1-xa-l(l - x)b-l 0 < x < 1 

f (x) = 
0
B(a, b) 

otherwise 

B(a,b) = fo1 xa-l(l - x)b-l dx 

The beta distribution can be used to model a random phenomenon whose set 
of possible values is some finite interval [c, d]-which, by letting c denote the origin 
and taking d - c as a unit measurement, can be transformed into the interval [O, 1 ]. 

When a = b, the beta density is symmetric about ~. giving more and more 
weight to regions about ! as the common value a increases. When a = b = 1, the 
beta distribution reduces to the uniform (0, 1) distribution. (See Figure 8.) When 
b > a, the density is skewed to the left (in the sense that smaller values become 
more likely), and it is skewed to the right when a > b. (See Figure 9.) 

f(x) 

0 1 
2 

Figure 8 Beta densities with parameters (a, b) when a= b. 

f(x) 

Figure 9 Beta densities with parameters (a, b) when a/(a + b) = 1/20. 
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The relationship 

B(a b) = r(a)r(b) 
' r(a + b) 

(6.3) 

can be shown to exist between 

and the gamma function. 
Upon using Equation (6.1) along with the identity (6.3), it is an easy matter to 

show that if Xis a beta random variable with parameters a and b, then 

a 
E[X] = -a -+-b 

ab 
Var(X) = ------

(a + b)2(a + b + 1) 

7 The Distribution of a Function of a Random Variable 

Example 
7a 

Example 
7b 

Often, we know the probability distribution of a random variable and are interested 
in determining the distribution of some function of it. For instance, suppose that we 
know the distribution of X and want to find the distribution of g(X). To do so, it is 
necessary to express the event that g(X) :s y in terms of X being in some set. We 
illustrate with the following examples. 

Let X be uniformly distributed over (0, 1 ). We obtain the distribution of the random 
variable Y, defined by Y = xn, as follows: For 0 :s y :s 1, 

Fy(y) = P{Y :s y} 

= P{Xn :s y} 

= P{X :::; ylfn} 

= Fx(ylfn) 

= ylfn 

For instance, the density function of Y is given by 

{ 
1 ylfn-l 

fy(y) = ; 
O:sy:sl 

otherwise • 

If X is a continuous random variable with probability density fx, then the distribu
tion of Y = X 2 is obtained as follows: For y ;::::: 0, 

Fy(y) = P{Y :s y} 

= P{X2 :s y} 

= P{-Jy :s X :s Jy} 

= Fx(Jy) - Fx(-Jy) 
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Differentiation yields 

1 
fy(y) = z . .;/ifx(./Y) + fx(-./Y)] • 

If X has a probability density f x, then Y = IXI has a density function that is obtained 
as follows: For y ~ 0, 

Fy(y) = P{Y :5 y} 

= P{IXI :5 y} 

= P{-y :5 X :5 y} 

= Fx(y) - Fx(-y) 

Hence, on differentiation, we obtain 

fy(y) =fx(y) + fx(-y) y~O • 
The method employed in Examples 7a through 7c can be used to prove 

Theorem 7.1. 
Let X be a continuous random variable having probability density functionfx. Sup
pose that g(x) is a strictly monotonic (increasing or decreasing), differentiable (and 
thus continuous) function of x. Then the random variable Y defined by Y = g(X) 
has a probability density function given by 

{ 
fx[g-1(y)] I dd g-1(y)' if y = g(x) for some x 

fy(y) = y 

0 if y * g(x) for all x 

where g-1 (y) is defined to equal that value of x such that g(x) = y. 
We shall prove Theorem 7.1 when g(x) is an increasing function. 

Proof Suppose that y = g(x) for some x. Then, with Y = g(X), 

Differentiation gives 

Fy(y) = P{g(X) :5 y} 

= P{X :5 g-1(y)} 

= Fx(g-1(y)) 

fy(y) = fx(g-l(y)) ~g-l(y) • 

which agrees with Theorem 7.1, since g-1(y) is nondecreasing, so its derivative is 
nonnegative. 

When y * g(x) for any x, then Fy(y) is either 0 or 1, and in either case fy(y) = 0. 

Let X be a continuous nonnegative random variable with density function/, and let 
Y = xn. Find fy, the probability density function of Y. 

Solution If g(x) = xn, then 

and 
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Hence, from Theorem 7.1, we obtain, for y;:::: 0, 

For n = 2, this gives 
1 

fy(y) = 2..;yf (./Y) 

which (since X ;:::: 0) is in agreement with the result of Example 7b. • 
The Lognormal Distribution If X is a normal random variable with mean µ, and vari
ance a 2 , then the random variable 

is said to be a lognormal random variable with parametersµ, and a 2• Thus, a random 
variable Y is lognormal if log(Y) is a normal random variable. The lognormal is often 
used as the distribution of the ratio of the price of a security at the end of one day 
to its price at the end of the prior day. That is, if Sn is the price of some security at 
the end of day n, then it is often supposed that s~~1 is a lognormal random variable, 

implying that X = log (ssa ) is normal. Thus, to assume that 88n is lognormal is to 
a-1 a-1 

assume that 

where X is normal. 
Let us now use Theorem 7.1 to derive the density of a lognormal random vari

able Y with parameters µ, and a 2• Because Y = e1C, where X is normal with mean µ, 
and variance a 2 , we need to determine the inverse of the function g(x) = eX. Because 

we obtain upon taking logarithms that 

g-1(y) = log(y) 

Using that fyg-1(y) = l/y, Theorem 7.1 yields the density: 

fy(y) = ~ exp{-(log(y) - µ,) 2 /2a2}, y > 0 
2'J'{ay • 

A random variable X is continuous if there is a nonnega- The expected value of a continuous random variable X is 
tive function/, called the probability density function of X, defined by 
such that, for any set B, 

P{X e B} = lf(x) dx E[X] = 1_: xf (x) dx 

If Xis continuous, then its distribution function F will be A useful identity is that for any function g, 
differentiable and 

d 
dx F(x) = f(x) E[g(X)] = £: g(x)f(x)dx 
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As in the case of a discrete random variable, the variance 
of X is defined by 

Var(X) = E[(X - E[X])2] 

A random variable X is said to be uniform over the inter
val (a, b) if its probability density function is given by 

l 
1 

-- a=sx=sb 
f(x) = b - a 

0 otherwise 

Its expected value and variance are 

E[x] = a + b (b - a)2 

2 Var(X) = 12 

A random variable Xis said to be normal with parameters 
µ, and a 2 if its probability density function is given by 

f(x) = _1_e-<x-µ,)2/2u2 
,./iiia 

-OO<X<OO 

It can be shown that 

µ, = E[X] a 2 = Var(X) 

If X is normal with mean µ, and variance a 2, then Z, 
defined by 

Z= X __ -_µ,_ 
a 

is normal with mean 0 and variance 1. Such a random vari
able is said to be a standard normal random variable. Prob
abilities about X can be expressed in terms of probabilities 
about the standard normal variable Z, whose probability 
distribution function can be obtained either from Table 1, 
the normal calculator on StatCrunch, or a website. 

When n is large, the probability distribution function 
of a binomial random variable with parameters n and p 
can be approximated by that of a normal random variable 
having mean np and variance np(l - p). 

A random variable whose probability density function 
is of the form 

{:>..e->.x x;;;::: 0 
f (x) = 0 otherwise 

is said to be an exponential random variable with parame
ter :>... Its expected value and variance are, respectively, 

1 1 
E[X] = - Var(X) = - 2 ).. ).. 

If X represents the life of an item, then the memoryless 
property states that for any t, the remaining life of at-year
old item has the same probability distribution as the life of 
a new item. Thus, one need not remember the age of an 
item to know its distribution of remaining life. 

Let X be a nonnegative continuous random variable 
with distribution function F and density function f. The 
function 

:>..(t) = f (t) t ;;;::: 0 
1 - F(t) 

is called the hazard rate, or failure rate, function of F. If 
we interpret X as being the life of an item, then for small 
values of dt, :>..(t) dt is approximately the probability that a 
t-unit-old item will fail within an additional time dt. If Fis 
the exponential distribution with parameter :>.., then 

J..(t) =).. t;;;::: 0 

In addition, the exponential is the unique distribution hav
ing a constant failure rate. 

A random variable is said to have a gamma distri
bution with parameters a and :>.. if its probability density 
function is equal to 

x;;;::: 0 

and is 0 otherwise. The quantity r(a) is called the gamma 
function and is defined by 

r(a) = fooo e-xxa-1 dx 

The expected value and variance of a gamma random vari
able are, respectively, 

O! O! 
E[X] = - Var(X) = - 2 ).. ).. 

A random variable is said to have a beta distribution 
with parameters (a, b) if its probability density function 
is equal to 

1 
f(x) = --xa-1(1 - x)b-l 0 ::5 x ::5 1 

B(a,b) 

and is equal to 0 otherwise. The constant B(a, b) is given by 

A key property possessed only by exponential random The mean and variance of such a random variable are, 
variables is that they are memoryless, in the sense that, for respectively, 
positive s and t, 

P{X > s + tiX > t} = P{X > s} 
a ab 

E[X] = a + b Var(X) = (a + b)2(a + b + 1) 
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Problems 

I. Let X be a random variable with probability density 
function 

f(x) = {c(l - x2) -1 < : < 1 
0 otherwise 

(a) What is the value of c? 

(b) What is the cumulative distribution function of X? 

2. A system consisting of one original unit plus a spare can 
function for a random amount of time X. If the density of 
Xis given (in units of months) by 

f (x) = { Cxe-xf2 x > 0 
0 xsO 

what is the probability that the system functions for at least 
5months? 

3. Consider the function 

f (x) = { ~(2x - x3) 0 < x < ~ 
otherwise 

6. Compute E[X) if X has a density function given by 

l 
1 
-xe-xf2 x > 0 

(a)f (x) = 4 , ; 
0 otherwise 

(b)/(x)= {c(l - x2) -1<:<1. 
0 otherwise ' 

l 
5 
- x > 5 

(c) f(x) = x2 . 

0 x :s; 5 

7. The density function of X is given by 

f(x) = {~ + bx2 

If E[X] = ~, find a and b. 

0 :s; x :s; 1 
otherwise 

8. The lifetime in hours of an electronic tube is a random 
variable having a probability density function given by 

f(x) = xe-x x;;;::: 0 

Could f be a probability density function? If so, determine Compute the expected lifetime of such a tube. 
C. Repeat if f (x) were given by 

f (x) = { C(2x - x2) 0 < x .< ~ 
0 otherwise 

4, The probability density function of X, the lifetime of a 
certain type of electronic device (measured in hours), is 
given by 

f (x) = x2 x > 10 l 10 

0 xslO 

(a) Find P{X > 20}. 
(b) What is the cumulative distribution function of X? 
(c) What is the probability that of 6 such types of devices, 
at least 3 will function for at least 15 hours? What assump
tions are you making? 

S. A filling station is supplied with gasoline once a week. 
If its weekly volume of sales in thousands of gallons is a 
random variable with probability density function 

f(x) = {5(1 - x)4 0 < x .< 1 
0 otherwise 

what must the capacity of the tank be so that the prob
ability of the supply being exhausted in a given week 
is .01? 

9. A seasonal product yields a net profit of b dollars for 
each unit sold and a net loss of dollars for each unit left 
unsold when the season ends. The seasonal demand of 
the number of units of the product that are ordered at a 
specific department store is a continuous random variable 
having probability density function f. Show that the opti
mal amount to stock is the value s* that satisfies 

* b F(s )=--
b + l 

where b is net profit per unit sale, l is the net loss per unit 
unsold, and Fis the cumulative distribution function of the 
seasonal demand. 

Io. Trains headed for destination A arrive at the train 
station at 15-minute intervals starting at 7 A.M., whereas 
trains headed for destination B arrive at 15-minute inter
vals starting at 7:05 A.M. 

(a) If a certain passenger arrives at the station at a time 
uniformly distributed between 7 and 8 A.M. and then gets 
on the first train that arrives, what proportion of time does 
he or she go to destination A? 
(b) What if the passenger arrives at a time uniformly dis
tributed between 7:10 and 8:10 A.M.? 

11. A point is chosen at random on a line segment of 
length L. Interpret this statement, and find the probabil
ity that the ratio of the shorter to the longer segment is 

1 . 
less than 4. . 
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12. A bus travels between the two cities A and B, which 
are 100 miles apart. If the bus has a breakdown, the dis
tance from the breakdown to city A has a uniform distri
bution over (0, 100). There is a bus service station in city A, 
in B, and in the center of the route between A ~nd B. It is 
suggested that it would be more efficient to have the three 
stations located 25, 50, and 75 miles, respectively, from A. 
Do you agree? Why? 

13. You arrive at a bus stop at 10 A.M., knowing that the bus 
will arrive at some time uniformly distributed between 10 
and 10:30. 

(a) What is the probability that you will have to wait 
longer than 10 minutes? 
(b) If, at 10:15, the bus has not yet arrived, what is the 
probability that you will have to wait at least an additional 
lOminutes? 

14. Let X be a uniform (0, 1) random variable. Compute 
E[Xn] by using Proposition 2.1, and then check the result 
by using the definition of expectation. 

15. If X is a normal random variable with parameters 
µ, = 10 and a 2 = 36, compute 

(a) P{X > 5}; 

(b) P{4 < X < 16}; 
(c) P{X < 8}; 
(d) P{X < 20}; 
(e) P{X > 16}. 

16. The annual rainfall (in inches) in a certain region is 
normally distributed with µ, = 40 and a = 4. What is the 
probability that starting with this year, it will take more 
than 10 years before a year occurs having a rainfall of more 
than 50 inches? What assumptions are you making? 

17. The salaries of physicians in a certain speciality are 
approximately normally distributed. If 25 percent of these 
physicians earn less than $180,000 and 25 percent earn 
more than $320,000, approximately what fraction earn 

(a) less than $200,000? 
(b) between $280,000 and $320,000? 

21. Suppose that the height, in inches, of a 25-year-old man 
is a normal random variable with parameters µ, = 71 and 
a 2 = 6.25. What percentage of 25-year-old men are taller 
than 6 feet, 2 inches? What percentage of men in the 6-
footer club are taller than 6 feet, 5 inches? 

22. Every day Jo practices her tennis serve by continually 
serving until she has had a total of 50 successful serves. 
If each of her serves is, independently of previous ones, 
successful with probability .4, approximately what is the 
probability that she will need more than 100 serves to 
accomplish her goal? 
Hint: Imagine even if Jo is successful that she continues to 
serve until she has served exactly 100 times. What must be 
true about her first 100 serves if she is to reach her goal? 

23. One thousand independent rolls of a fair die will be 
made. Compute an approximation to the probability that 
the number 6 will appear between 150 and 200 times inclu
sively. If the number 6 appears exactly 200 times, find the 
probability that the number 5 will appear less than 150 
times. 

24. The lifetimes of interactive computer chips produced 
by a certain semiconductor manufacturer are normally dis
tributed with parameters µ, = 1.4 X 106 hours and a = 
3 X H>5 hours. What is the approximate probability that a 
batch of 100 chips will contain at least 20 whose lifetimes 
are less than 1.8 x 106? 

25. Each item produced by a certain manufacturer is, 
independently, of acceptable quality with probability .95. 
Approximate the probability that at most 10 of the next 
150 items produced are unacceptable. 

26. 1\vo types of coins are produced at a factory: a fair coin 
and a biased one that comes up heads 55 percent of the 
time. We have one of these coins but do not know whether 
it is a fair coin or a biased one. In order to ascertain which 
type of coin we have, we shall perform the following sta
tistical test: We shall toss the coin 1000 times. If the coin 
lands on heads 525 or more times, then we shall conclude 
that it is a biased coin, whereas if it lands on heads fewer 
than 525 times, then we shall conclude that it is a fair coin. 
If the coin is actually fair, what is the probability that we 
shall reach a false conclusion? What would it be if the coin 

18. Suppose that Xis a normal random variable with mean were biased? 
5. If P{X > 9} = .2, approximately what is Var(X)? 

19. Let x be a normal random variable with mean 12 and 27. In 10,000 independent tosses of a coin, the coin landed 
on heads 5800 times. Is it reasonable to assume that the 

variance 4. Find the value of c such that P{X > c} = .10. coin is not fair? Explain. 

20. If 65 percent of the population of a large community 
is in favor of a proposed rise in school taxes, approximate 
the probability that a random sample of 100 people will 
contain 

(a) at least 50 who are in favor of the proposition; 
(b) between 60 and 70 inclusive who are in favor; 
(c) fewer than 75 in favor. 

28. 1\velve percent of the population is left handed. 
Approximate the probability that there are at least 20 left
handers in a school of 200 students. State your assump
tions. 

29. A model for the movement of a stock supposes that if 
the present price of the stock is s, then after one period, it 
will be either us with probability p or ds with probability 
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1 - p. Assuming that successive movements are indepen
dent, approximate the probability that the stock's price 
will be up at least 30 percent after the next 1000 periods 
if u = 1.012, d = 0.990, and p = .52. 

30. An image is partitioned into two regions, one white 
and the other black. A reading taken from a randomly 
chosen point in the white section will be normally dis
tributed with µ, = 4 and a 2 = 4, whereas one taken from a 
randomly chosen point in the black region will have a nor
mally distributed reading with parameters (6, 9). A point 
is randomly chosen on the image and has a reading of 5. If 
the fraction of the image that is black is a, for what value 
of a would the probability of making an error be the same, 
regardless of whether one concluded that the point was in 
the black region or in the white region? 

31. (a) A fire station is to be located along a road of length 
A, A < oo. If fires occur at points uniformly chosen on (0, 
A), where should the station be located so as to minimize 
the expected distance from the fire? That is, choose a so 
as to 

minimize E[IX - al] 

when Xis uniformly distributed over (0, A). 
(b) Now suppose that the road is of infinite length
stretching from point 0 outward to oo. If the distance of 
a fire from point 0 is exponentially distributed with rate A., 
where should the fire station now be located? That is, we 
want to minimize E[IX - al], where Xis now exponential 
with rate A.. 

32. The time (in hours) required to repair a machine is an 
exponentially distributed random variable with parameter 
A.=~- What is 

(a) the probability that a repair time exceeds 2 hours? 
(b) the conditional probability that a repair takes at least 
10 hours, given that its duration exceeds 9 hours? 

33. The number of years a radio functions is exponentially 
distributed with parameter A. = ~. If Jones buys a used 
radio, what is the probability that it will be working after 
an additional 8 years? 

34. Jones figures that the total number of thousands of 
miles that an auto can be driven before it would need to 
be junked is an exponential random variable with parame
ter .fn. Smith has a used car that he claims has been driven 
only 10,000 miles. If Jones purchases the car, what is the 
probability that she would get at least 20,000 additional 

Theoretical Exercises 

I. The speed of a molecule in a uniform gas at equilibrium 
is a random variable whose probability density function is 
given by 

miles out of it? Repeat under the assumption that the life
time mileage of the car is not exponentially distributed, 
but rather is (in thousands of miles) uniformly distributed 
over (0, 40). 

35. The lung cancer hazard rate A.(t) of a t-year-old male 
smoker is such that 

A.(t) = .027 + .00025(t - 40)2 t;;:::: 40 

Assuming that a 40-year-old male smoker survives all 
other hazards, what is the probability that he survives to 
(a) age 50 and (b) age 60 without contracting lung cancer? 

36. Suppose that the life distribution of an item has the 
hazard rate function A.(t) = t3, t > 0. What is the probabil
ity that 

(a) the item survives to age 2? 
(b) the item's lifetime is between .4 and 1.4? 
(c) a 1-year-old item will survive to age 2? 

37. If xis uniformly distributed over (-1, 1), find 

(a) P{IXI > ~ }; 
(b) the density function of the random variable IXI. 

38. If Y is uniformly distributed over (0, 5), what is the 
probability that the roots of the equation 4x2 + 4x Y + 
Y + 2 = 0 are both real? 

39. If Xis an exponential random variable with parame
ter A. = 1, compute the probability density function of the 
random variable Y defined by Y = logX. 

40. If Xis uniformly distributed over (0, 1), find the den
sity function of Y = eX. 

41. Find the distribution of R = A sin 8, where A is a fixed 
constant and (} is uniformly distributed on (-rr /2, n /2). 
Such a random variable R arises in the theory of ballistics. · 
If a projectile is fired from the origin at an angle a from the 
earth with a speed v, then the point Rat which it returns 
to the earth can be expressed as R = (v2 /g) sin2a, where g 
is the gravitational constant, equal to 980 centimeters per 
second squared. 

42. Let Y be a lognormal random variable (see Example 
7e for its definition) and let c > 0 be a constant. Answer 
true or false to the following, and then give an explanation 
for your answer. 

(a) cY is lognormal; 
(b) c + Y is lognormal. 

{
ax2e-bx2 x ;;:::: 0 

f(x) = 0 x < 0 
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where b = m/2kT and k, T, and m denote, respectively, 8. Let X be a random variable that takes on values 
Boltzmann's constant, the absolute temperature of the gas, between 0 and c. That is, P{O s X s c} = 1. Show that 
and the mass of the molecule. Evaluate a in terms of b. 

2. Show that 

E[Y] = la'xi P{Y > y} dy - looo P{Y < -y} dy 

Hint: Show that 

f 00 P{Y < -y} dy = -f o xfy(x) dx lo -00 

looo P{Y > y} dy = looo xfy(X) dx 

3. Show that if X has density function f, then 

E[g(X)] = L: g(x)f(x) dx 

Hint: Using Theoretical Exercise 2, start with 

E[g(X)]= lo00 P{g(X) > y}dy - lo00
P{g(X) < -y}dy 

and then proceed as in the proof given in the text when 
g(X) ~ 0. 

4, Prove Corollary 2.1. 

S. Use the result that for a nonnegative random vari
able Y, 

E[Y] = lo00 
P{Y > t} dt 

to show that for a nonnegative random variable X, 

Hint: Start with 

and make the change of variables t = x". 

6. Define a collection of events Ea, 0 < a < 1, having the 

property that P(Ea) = 1 for all a but P ( !) Ea) = 0. 

Hint: Let X be uniform over (0, 1) and define each Ea in 
terms of X. 

c2 
Var(X) :-:; -

4 

Hint: One approach is to first argue that 

E[X2] :-:; cE[X] 

and then use this inequality to show that 

Var(X) s c2[a(l - a)] where a= E[X] 
c 

9. Show that Z is a standard normal random variable; then, 
for x > 0, 

(a) P{Z > x} = P{Z < -x}; 

(b) P{IZI > x} = 2P{Z > x}; 

(c) P{IZI < x} = 2P{Z < x} - 1. 

IO. Let f (x) denote the probability density function of a 
normal random variable with mean µ, and variance a 2 . 

Show that µ, - a and µ + a are points of inflection of 
this function. That is, show that f" (x) = 0 when x = µ, - a 
or x =µ+a. 

11. Let Z be a standard normal random variable Z, and let 
g be a differentiable function with derivative g'. 

(a) Show that 
(b) Show that 
(c) Find E[Z4]. 

E[g'(Z)] = E[Zg(Z)]; 
E[zn+l] = nE[zn-1]. 

12. Use the identity of Theoretical Exercise 5 to derive 
E[X2 ] when X is an exponential random variable with 
parameter A.. 

13. The median of a continuous random variable having 
distribution function Fis that value m such that F(m) = ! . 
That is, a random variable is just as likely to be larger than 
its median as it is to be smaller. Find the median of X if 
Xis 

(a) uniformly distributed over (a, b); 

(b) normal with parametersµ,, a 2; 

(c) exponential with rate A.. 

14. The mode of a continuous random variable having 
density f is the value of x for which f(x) attains its max
imum. Compute the mode of X in cases (a), (b), and (c) of 
Theoretical Exercise 13. 

1. The standard deviation of x, denoted SD(X), is IS. If Xis an exponential random variable with parameter 
given by A., and c > 0, show that cX is exponential with parameter 

A./c. 
SD(X) = Jvar(X) 

Find SD(aX + b) if X has variance a 2. 

16. Compute the hazard rate function of X when Xis uni
formly distributed over (0, a). 
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17. If X has hazard rate function A.x(t), compute the haz- 28. Consider the beta distribution with parameters 
ard rate function of aX where a is a positive constant. (a, b). Show that 

18. Veri~y that the gamma density function integrates to 1. (a) when a > 1 and b > 1, the density is unimodal (that 
is, it has a unique mode) with mode equal to (a - l)/(a + 

19. If Xis an exponential random variable with mean l/A., b - 2); 
show that 

E[Xk] = k! 
A_k 

k= 1,2, ... 

Hint: Make use of the gamma density function to evaluate 
the preceding. 

20. Verify that 
a 

Var(X) = A.2 

when X is a gamma random variable with parameters a 
and A.. 

21. Show that r ( n = .,/if. 

Hint: r (n = J(; e-xx-i12 dx. Make the change of vari

ables y = v'2X and then relate the resulting expression to 
the normal distribution. 

22. Compute the hazard rate function of a gamma random 
variable with parameters (a,A.) and show it is increasing 
when a ;;:::: 1 and decreasing when a :::;; 1. 

23. Compute the hazard rate function of a Weibull random 
variable and show it is increasing when f3 ;;:::: 1 and decreas
ing when f3 ::5 1. 

24. Show that a plot of log(log(l - F(x))-i) against log x 
will be a straight line with slope f3 when FO is a Weibull 
distribution function. Show also that approximately 63.2 
percent of all observations from such a distribution will be 
less than a. Assume that v = 0. 

25. Let 

( X - v)f3 
Y= -

a 

Show that if X is a Weibull random variable with parame
ters v,a, and {3, then Y is an exponential random variable 
with parameter A. = 1 and vice versa. 

26. If X is a beta random variable with parameters a and 
b, show that 

a 
E[X]=-

a + b 
ab 

Var(X) = -(a_+_b_)-2(_a_+_b_+_l_) 

(b) when a ::5 1, b ::5 1, and a + b < 2, the density is either 
unimodal with mode at 0 or 1 or U-shaped with modes at 
both 0 and l; 
(c) when a= 1 = b, all points in [O, 1] are modes. 

29. Let X be a continuous random variable having cumu
lative distribution function F. Define the random variable 
Y by Y = F(X). Show that Y is uniformly distributed over 
(0, 1). 

30. Let X have probability density fx. Find the probabil
ity density function of the random variable Y defined by 
Y=aX + b. 

31. Find the probability density function of Y = eX when 
Xis normally distributed with para_meters µ,and a 2. The 
random variable Y is said to have a lognormal distribution 
(since log Y has a normal distribution) with parametersµ, 
and a 2 . 

32. Let X and Y be independent random variables that are 
both equally likely to be either 1, 2, ... , (lO)N, where N is 
very large. Let D denote the greatest common divisor of 
X and Y, and let Qk = P{D = k}. 

(a) Give a heuristic argument that Qk = tzQi. 
Hint: Note that in order for D to equal k, k must divide 
both X and Y and also X / k, and Y / k must be relatively 
prime. (That is, X/k, and Y/k must have a greatest com
mon divisor equal to 1.) 
(b) Use part (a) to show that 

Qi= P{X and Y are relatively prime} 

1 
00 

L:11k2 
k=i 

00 

It is a well-known identity that I: ljk2 = rr 2 /6, so Qi = 
i 

6/rr2. (In number theory, this is known as the Legendre 
theorem.) 
(c) Now argue that 

00 (p? - 1) 
Qi= n 1 p? 

1=i l 

where Pi is the ith-smallest prime greater than 1. 
Hint: X and Y will be relatively prime if they have no com-

27. If Xis uniformly distributed over (a, b), what random mon prime factors. 
variable, having a linear relation with X, is uniformly dis-
tributed over (0, 1)? 33. Prove Theorem 7.1 when g(x) is a decreasing 

function. 
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Self-Test Problems and Exercises 

I. The number of minutes of playing time of a certain high 
school basketball player in a randomly chosen game is 
a random variable whose probability density function is 
given in the following figure: 

.050 I 

.0251 
~~~~~~~~~~~~~~~~~~~ 

10 20 30 

Find the probability that the player plays 

(a) more than 15 minutes; 
(b) between 20 and 35 minutes; 
( c) less than 30 minutes; 
(d) more than 36 minutes. 

40 

2. For some constant c, the random variable X has the 
probability density function 

{ ex" O<x<l 
f (x) = 0 otherwise 

Find (a) c and (b) P{X > x},O < x < 1. 

3. For some constant c, the random variable X has the 
probability density function 

{ cx4 0<x<2 
f(x) = 0 otherwise 

Find (a) E[X] and--(b) Var(X). 

4, The random variable X has the probability density 
function 

f (x) = { ax + bx2 0 < x .< 1 
0 otherwise 

If E[X] = .6, find (a) P{X < !land (b) Var(X). 

having the lowest bid), then you plan to pay another firm 
$100,000 to do the work. If you believe that the minimum 
bid (in thousands of dollars) of the other participating 
companies can be modeled as the value of a random vari
able that is uniformly distributed on (70, 140), how much 
should you bid to maximize your expected profit? 

7. To be a winner in a certain game, you must be successful 
in three successive rounds. The game depends on the value 
of U, a uniform random variable on (0, 1). If U > .1, then 
you are successful in round 1; if U > .2, then you are suc
cessful in round 2; and if U > .3, then you are successful 
in round 3. 

(a) Find the probability that you are successful in round 1. 
(b) Find the conditional probability that you are successful 
in round 2 given that you were successful in round 1. 
(c) Find the conditional probability that you are success
ful in round 3 given that you were successful in rounds 1 
and2. 
(d) Find the probability that you are a winner. 

8. A randomly chosen IQ test taker obtains a score that is 
approximately a normal random variable with mean 100 
and standard deviation 15. What is the probability that the 
score of such a person is (a) more than 125; (b) between 
90and110? 

9. Suppose that the travel time from your home to your 
office is normally distributed with mean 40 minutes and 
standard deviation 7 minutes. If you want to be 95 percent 
certain that you will not be late for an office appointment 
at 1 P.M., what is the latest time that you should leave 
home? 

IO. The life of a certain type of automobile tire is normally 
distributed with mean 34,000 miles and standard deviation 
4000 miles. 

(a) What is the probability that such a tire lasts more than 
40,000 miles? 
(b) What is the probability that it lasts between 30,000 and 

S. The random variable Xis said to be a discrete uniform 35,000 miles? 
random variable on the integers 1, 2, ... , n if 

P{X=i}=.!_ i=l,2, ... ,n 
n 

For any nonnegative real number x, let lnt(x) (sometimes 
written as [x]) be the largest integer that is less than or 
equal to x. Show that if U is a uniform random variable on 
(0, 1), thenX = Int(nU) + 1 is a discrete uniform random 
variable on 1, ... , n. 

(c) Given that it has survived 30,000 miles, what is the con
ditional probability that the tire survives another 10,000 
miles? 

11. The annual rainfall in Cleveland, Ohio, is approxi
mately a normal random variable with mean 40.2 inches 
and standard deviation 8.4 inches. What is t.he probabil
ity that 

(a) next year's rainfall will exceed 44 inches? 
6. Your company must make a sealed bid for a construe- (b) the yearly rainfalls in exactly 3 of the next 7 years will 
tion project. If you succeed in winning the contract (by exceed 44 inches? 
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Assume that if A; is the event that the rainfall exceeds 44 
inches in year i (from now), then the events A;, i ;;:: 1, are 
indepeQdent. 

16. A standard Cauchy random variable has density func
tion 

1 
f(x) = n(l + x2) -OO<X<OO 

12. The following table uses 1992 data concerning the Show that if x is a standard Cauchy random 
percentages of male and female full-time workers whose variable, then l/X is also a standard Cauchy random vari-
annual salaries fall into different ranges: able. 

Percentage 
Earnings range of females 

S9999 8.6 
10,000-19,999 38.0 
20,000-24,999 19.4 
25,000-49,999 29.2 
;;::50,000 4.8 

Percentage 
of males 

4.4 
21.1 
15.8 
41.5 
17.2 

17. A roulette wheel has 38 slots, numbered 0, 00, and 1 
through 36. If you bet 1 on a specified number, then you 
either win 35 if the roulette ball lands on that number or 
lose 1 if it does not. If you continually make such bets, 
approximate the probability that 

(a) you are winning after 34 bets; 
(b) you are winning after 1000 bets; 
(c) you are winning after 100,000 bets. 

Suppose that random samples of 200 male and 200 female Assume that each roll of the roulette ball is equally likely 
full-time workers are chosen. Approximate the probabil- to land on any of the 38 numbers. 
ity that 

(a) at least 70 of the women earn $25,000 or more; 
(b) at most 60 percent of the men earn $25,000 or more; 
(c) at least three-fourths of the men and at least half the 
women earn $20,000 or more. 

13. At a certain bank, the amount of time that a customer 
spends being served by a teller is an exponential random 
variable with mean 5 minutes. If there is a customer in ser
vice when you enter the bank, what is the probability that 
he or she will still be with the teller after an additional 4 
minutes? 

14. Suppose that the cumulative distribution function of 
the random variable X is given by 

F(x) = 1 - e-x2 x > 0 

Evaluate (a) P{X > 2}; (b) P{l < X < 3}; (c) the hazard 
rate function of F; (d) E[X]; (e) Var(X). 

Hint: For parts ( d) and ( e ), you might want to make use of 
the results of Theoretical Exercise 5. 

IS. The number of years that a washing machine func
tions is a random variable whose hazard rate function is 
given by 

{ 
.2 0 < t < 2 

A.(t) = .2 + .3(t - 2) 2 ::5 t < 5 
1.1 t > 5 

(a) What is the probability that the machine will still be 
working 6 years after being purchased? 
(b) If it is still working 6 years after being purchased, what 
is the conditional probability that it will fail within the next 
2 years? 

18. There are two types of batteries in a bin. When in use, 
type i batteries last (in hours) an exponentially distributed 
time with rate A.;, i = 1, 2. A battery that is randomly cho
sen from the bin will be a type i battery with probability 

2 
p;, L Pi = 1. If a randomly chosen battery is still operat

i=l 
ing after t hours of use, what is the probability that it will 
still be operating after an additional s hours? 

19. Evidence concerning the guilt or innocence of a defen
dant in a criminal investigation can be summarized by the 
value of an exponential random variable X whose mean 
µ depends on whether the defendant is guilty. If inno
cent, µ = 1; if guilty, µ = 2. The deciding judge will rule 
the defendant guilty if X > c for some suitably chosen 
value of c. 

(a) If the judge wants to be 95 percent certain that an inno
cent man will not be convicted, what should be the value 
ofc? 
(b) Using the value of c found in part (a), what is the 
probability that a guilty defendant will be convicted? 

20. For any real number y, define y+ by 

+ y, ify;;:: 0 
y = 0, ify < 0 

Let c be a constant. 

(a) Show that 

E[(Z - c)+] = - 1-e-c2/2 - c(l - <l>(c)) 
,j2i 

when Z is a standard normal random variable. 
(b) .Find E~ (X - c)+] when X is normal with mean µ and 
vanancea . . 
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21. With <l>(x) being the probability that a normal random (a) Show that if b > 0, then bU is uniformly distributed 
variable with mean 0 and variance 1 is less than x, which on (0, b), and if b < 0, then bU is uniformly distributed on 
of the following are true: (b, 0). 

(a) <l>(-x) = <l>(x) 
(b) <l>(x) + <l>(-x) = 1 
(c) <l>(-x) = 1/<l>(x) 

22. Let U be a uniform (0, 1) random variable, and let 
a < b be constants. 

Answers to Selected Problems 

2. 3.5e-5/2 3. no; no 4. 1/2, .8999 5. 1 - (.01)115 
6. 4,0,oo 7. 3/5; 615 8. 2 10. 2/3; 2/3 lL 215 
13. 2/3; 1/3 15 . . 7977; .6827; .3695; .9522; .1587 
16. (.9938)10 17 . . 315; .136 18. 22.66 19. 14.56 

Solutions to Self-Test Problems and Exercises 

I. Let X be the number of minutes played. 
(a) P{X > 15} = 1 - P{X s 15} = 1 - 5(.025) = .875 
(b) P{20 < X < 35} = 10(.05) + 5(.025) = .625 
(c) P{X < 30} = 10(.025) + 10(.05) = .75 
(d) P{X > 36} = 4(.025) = .1 

2. (a) 1 = fl cxndx = c/(n + 1) ~ c = n + 1 

(b) P{X > x} = (n + 1) J/ xndx = xn+11
1 = 1 - xn+1 

x x 

3. First, let us find c 'by using 

1 = fo2 
cx4dx = 32c/5 ~ c = 5/32 

(a) E[X] =~Jg x5dx = ~~ = 5/3 

(b) E[X2) = ~Jg x6dx = ~ 1¥ = 20/7 ~ Var(X) = 
20/7 - (5/3)2 = 5/63 

4. Since 

1 = fo1 
(ax + bx2)dx = a/2 + b/3 

.6 = fo1 
(ax2 + bx3)dx = a/3 + b/4 

we obtain a= 3.6, b = -2.4. Hence, 
(a) P{X < 1/2} = J0

112(3.6x - 2.4x2)dx = (1.8x2 -
3 11/2 .8x) 0 = .35 

(b) E[X2] = fl(3.6x3 - 2.4x4)dx = .42 ~ Var(X) = .06 

(b) Show that a + U is uniformly distributed on (a, 1 + a). 

(c) What function of U is uniformly distributed on (a, b)? 

(d) Show that min(U, 1 - U) is a uniform (0, 1/2) random 
variable. 
(e) Show that max(U, 1 - U) is a uniform (1/2, 1) random 
variable. 

20 • . 9994; .75; .977 22 . . 974 23 •. 9253; .1767 
26 •. 0606; .0525 28. .8363 29 . . 9993 32. e-1; e-1/2 
34. e-1; 1/3 38. 3/5 40. 1/y 

5. For i = 1, ... , n, 

P{X = i} = P{Int(nU) = i - 1} 

= P{i - 1 s nU < i} 

{i-1 i} 
=P -n-SU<n 

= 1/n 

6. If you bid x, 70 s x s 140, then you will either win 
the bid and make a profit of x - 100 with probability 
(140 - x)/70 or lose the bid and make a profit of 0 oth
erwise. Therefore, your expected profit if you bid x is 

1 1 2 
-(x - 100)(140 - x) = -(240.x - x - 14000) 
70 70 

Differentiating and setting the preceding equal to 0 gives 

240-2x=0 

Therefore, you should bid $120, 000. Your expected profit 
will be 40n thousand dollars. 

7. (a) P{ U > .1} = 9/10 
(b) P{U > .21U > .1} = P{U > .2}/P{U > .1} = 8/9 
(c) P{U > .31U > .2, U > .1} = P{U > .3}/P{U > .2} = 7/8 
(d) P{U > .3} = 7 /10 
The answer to part (d) could also have been ot?tained by 
multiplying the probabilities in parts (a), (b), and (c). 

8. Let X be the test score, and let Z = (X - 100) /15. Note 
that Z is a standard normal random variable. 
(a) P{X > 125} = P{Z > 25/15} ~ .0478 
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(b) P{90 < X < 110} = P{-10/15 < Z < 10/15} (b) 

= P{Z < 2/3} - P{Z < - 2/3} 

= P{Z < 2/3} - [1 - P{Z < 2/3}] 

~ .4950 

9. Let X be the travel time. We want to find x such that 

P{X > x} = .05 

which is equivalent to 

That is, we need to find x such that 

where Z is a standard normal random variable. But 

P{Z > 1.645} = .05 

Thus, 
x - 40 
- 7- = 1.645 or x = 51.515 

Therefore, you should leave no later than 8.485 minutes 
after 12 P.M. 

Io. Let X be the tire life in units of one thousand, and let 
Z = (X - 34)/4. Note that Z is a standard normal random 
variable. 
(a) P{X > 40} = P{Z > 1.5} ~ .0668 
(b) P{30 < X < 35} = P{-1 < Z < .25} = P{Z < .25} -
P{Z > 1} ~ .44 

(c) P{X > 401X > 30} = P{X > 40}/P{X > 30} 

= P{Z > 1.5}/P{Z > - 1} ~ .079 

11. LetX be next year's rainfall and let Z= (X -40.2)/8.4. 
(a) P{X > 44} = P{Z > 3.8/8.4} ~ P{Z > .4524} ~ .3255 

(b) ( ~) (.3255)3(.6745)4 

12. Let Mi and Wi denote, respectively, the numbers of 
men and women in the samples that earn, in units of 
$1, 000, at least i per year. Also, let Z be a standard normal 
random variable. 
(a) 
P{W2s ~ 70} 

= P{W2s ~ 69.5} 

_ p { W2s - 200(.34) > 69.5 - 200(.34) } 
- J200(.34)(.66) - J200(.34)(.66) 

~ P{Z ~ .2239} 

~ .4114 

P{M2s s 120} 

= P{M2s s 120.5} 

_ p { M2s - (200)(.587) < 120.5 - (200)(.587) } 
- J(200)(.587)(.413) - J(200)(.587)(.413) 

~ P{Z s .4452} 

~ .6719 

(c) 

P{M20 ~ 150} 

= P{M20 ~ 149.5} 

_ p { M20 - (200)(.745) > 149.5 - (200)(.745)} 
- J(200)(.745)(.255) - JC200)(.74S)(.255) 

~ P{Z ~ .0811} 

~ .4677 

P{W20 ~ 100} 

= P{W20 ~ 99.5} 

_ p { W20 - (200)(.534) > 99.5 - (200)(.534) } 
- J(200)(.534)(.466) - J(200)(.534)(.466) 

~ P{Z ~ -1.0348} 

~ .8496 

Hence, 

P{M20 ~ 150}P{W20 ~ 100} ~ .3974 

13. The lack of memory property of the exponential gives 
the result e-415 . 

14. (a) e-22 = e-4 

(b) F(3) - F(l) = e-1 - e-9 

(c) )..(t) = 2te-t2 /e-t2 = 2t 
(d) Let Z be a standard normal random variable. Use the 
identity E[X] =Jo P{X > x} dx to obtain 

E[X] = fo00 e-x2 dx 

= 2-1/2 fooo e_Yz/2 dy 

= r112~P{Z > O} 

= ../7i/2 

(e) Use the result of Theoretical Exercise 5 to obtain 

E[X2] = fo00 2xe-x2 dx = -e-x2 [ = 1 

Hence, Var(X) = 1 - n /4. 
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IS. (a) P{X > 6} =exp{- J; A.(t)dt} = e-3.45 

(b) P{X < 81X > 6} = 1 - P{X > 8!X > 6} 

= 1 - P{X > 8}/P{X > 6} 
= 1 _ e-5.65 ;e-3.45 

RJ .8892 

16. For x ~ 0, 

F1;x(x) = P{l/X s x} 

= P{X s O} + P{X ~ 1/x} 

= 1/2 + 1 - Fx(l/x) 

Differentiation yields 

!i;x(x) = x-2/x(l/x) 
1 

- x2rr(1 + (1/x)2) 

=fx(x) 

The proof when x < 0 is similar. 

17. If X denotes the number of the first n bets that you win, 
then the amount that you will be winning after n bets is 

35X - (n - X) = 36X - n 

Thus, we want to determine 

a = P{36X - n > 0} = P{X > n/36} 

when X is a binomial random variable with parameters n 
andp = 1/38. 
(a) When n = 34, 

a =P{X ~ 1} 

= P{X > .5} ~ (the continuity correction) 

- p { x - 34/38 > .5 - 34/38 } 
- J34(1/38)(37 /38) J34(1/38)(37 /38) 

-P{ X - 34/38 
- J34(1/38)(37 /38) 

RJ <l>(.4229) 

RJ .6638 

> -.4229} 

(Because you will be ahead after 34 bets if you win at least 
1 bet, the exact probability in this case is 1 - (37 /38)34 = 
.5961.) 
(b) Whenn = 1000, 

a= P{X > 27.5} 

- p { x - 1000/38 > 27.5 - 1000/38 } 
- JlOOO(l/38)(37 /38) J1000(1/38)(37 /38) 

RJ 1 - <l>(.2339) 

RJ .4075 

The exact probability-namely, the probability that a 
binomial n = 1000, p = 1/38 random variable is greater 
than 27-is .3961. 
(c) Whenn = 100,000, 

a= P{X > 2777.5} 

- p { x - 100000/38 > 2777.5 - 100000/38 } 
- JlOOOOO(l/38)(37 /38) JlOOOOO(l/38)(37 /38) 

RJ 1 - <1>(2.883) 

RJ .0020 

The exact probability in this case is .0021. 

18. If X denotes the lifetime of the battery, then the 
desired probability, P{X > s + tlX > t}, can be determined 
as follows: 

P{X > s + t, X > t} 
P{X > s + tlX > t} = P{X > t} 

= 

= 

P{X > s + t} 

P{X > t} 
P{X>s+tlbattery is type 1Jp1 

+P{X>s+tlbattery is type 2Jp2 

PIX>t1battery is type lJp1 
+P{X>tlbattery is type 2Jpz 

e-A1(s+t)Pl + e-A2(s+t>p2 = --::-'."'"-----:--:---
e-Attp1 + e-A2tp2 

Another approach is to directly condition on the type 
of battery and then use the lack-of-memory property of 
exponential random variables. That is, we could do the fol
lowing: 

P{X > s + tlX > t} 

= P{X > s + t!X > t, type l}P{type l!X > t} 

+ P{X > s + tlX > t, type 2}P{type 21X > t} 

= e-A15P{type l!X > t} + e-A25P{type 21X > t} 

Now for i = 1,2, use 

. P{type i,X > t} 
P{type zlX > t} = P{X > t} 

P{X > tltype i}Pi 

P{X > tltype l}p1 + P{X > tltype 2}p2 
e-A;tPi 

19. Let Xi be an exponential random variable with mean 
i, i = 1, 2. 
(a) The value c should be such that P{X1 > c} = .05. 
Therefore, 

e-c = .05 = 1/20 

or c = log(20) = 2.996. 

(b) P{X2 > c} = e-c/2 = Jzo = .2236 
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20. (a) 

E[(Z - c)+] = - (x - c)+e-x7-12 dx 1 100 
./2ii -oo 

= -- (x - c)e-:i?-12 dx 1 100 
./2ii c 

= -- xe-x 12 dx--- ce-x7-12 dx 1 100 
2 1 100 

./2ii c ./2ii c 

= - ~e-:i?-12 1~ - c(l - <l>(c)) 

= _1_e-c2;2 - c(l - <l>(c)) 
./2ii 

Hence, 

fbu(x) = l/b,O < x < b 

The argument when b < 0 is similar . 
(b) For a < x < 1 + a, 

P{a + U < x} =P{U < x - a} =x - a 

Differentiation yields 

fa+u(x) = l,a < x < 1 + a 

(b) Using the fact that X has the same distribution as (c) a + (b - a)U 
µ, + uZ, where Z is a standard normal random variable, (d) For 0 < x < 1/2, 
yields 

where a= 7. 
21. Only (b) is true. 

22. (a) If b > 0, then for 0 < x < b, 

P(bU < x) = P{U < x/b} =x/b. 

P{min(U,1-U)<x}=P({U<x} u {U> 1-xl) 

= P{U <x} +P{U > 1-x}=2x 

Differentiating gives 

fmin(U, 1-U)(X) = 2, 0 < X < 1/2 

(e) Using that max(U, 1 - U) = 1 - min(U, 1 - U), the 
result follows from (a), (b), and (d). A direct argument is 
that, for 1/2 < x < 1, 

P {max (U, 1- U) < x} = 1-P {max (U, 1- U) > x} 

Hence, 

= 1 - P({u > x} u {U < 1 - x}) 

= 1- (1-x) - (1 - x) = 2x-1 

fmax(U,1-U)(X) = 2, 1/2 < X < 1 
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JOINTLY DISTRIBUTED RANDOM 

VARIABLES 

Contents 
I Joint Distribution Functions S Conditional Distributions: Continuous Case 

6 Order Statistics 2 Independent Random Variables 
3 Sums of Independent Random 7 Joint Probability Distribution of Functions 

of Random Variables Variables 
4 Conditional Distributions: Discrete Case 8 Exchangeable Random Variables 

Joint Distribution Functions 
We are often interested in probability statements concerning two or more random 
variables. In order to deal with such probabilities, we define, for any two random 
variables X and Y, the joint cumulative probability distribution function of X and 
Yby 

F(a,b) = P{X s a, Y s b} - oo < a,b < oo 

The distribution of X can be obtained from the joint distribution of X and Y as 
follows: 

Fx(a) = P{X s a} 

= P{X s a, Y < oo} 

= P ( lim {X s a, Y s b}) 
b--+oo 

= lim P{X s a,Y s b} 
b--+oo 

= lim F(a,b) 
b--+oo 

= F(a,oo) 

Note that in the preceding set of equalities, we have once again made use of the fact 
that probability is a continuous set (that is, event) function. Similarly, the cumulative 
distribution function of Y is given by 

Fy(b) = P{Y ::;; b} 

= lim F(a,b) 
a--+oo 

= F(oo,b) 

From Chapter 6 of A First Course in Probability, Ninth Edition. Sheldon Ross. 
Copyright© 2014 by Pearson Education, Inc. All rights reserved. 
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The distribution functions F x and Fy are sometimes referred to as the marginal 
distributions of X and Y. 

All joint probability statements about X and Y can, in theory, be answered in 
terms of their joint distribution function. For instance, suppose we wanted to com
pute the joint probability that X is greater than a and Y is greater than b. This could 
be done as follows: 

P{X > a, Y > b} = 1 - P({X > a, Y > b}c) 

= 1 - P({X > a}c U {Y > b}c) 

= 1 - P({X :::;; a} U {Y :::;; b}) 

= 1 - [P{X:::;; a}+ P{Y:::;; b} - P{X:::;; a,Y:::;; b}] 

= 1 - Fx(a) - Fy(b) + F(a,b) 

(1.1) 

Equation (1.1) is a special case of the following equation, whose verification is left 
as an exercise: 

P{a1 < X :5 a2,b1 < Y :5 b2} 

= F(a2, b2) + F(ai, bi) - F(ai, b2) - F(a2, bi) (1.2) 

whenever ai < a2, bi < b2. 
In the case when X and Y are both discrete random variables, it is convenient 

to define the joint probability mass function of X and Y by 

p(x,y) = P{X = x, Y = y} 

The probability mass function of X can be obtained fromp(x,y) by 

px(x) = P{X = x} 

= I: p(x,y) 
y:p(x,y)>O 

Similarly, 

py(y) = I: p(x,y) 
x:p(x,y)>O 

Suppose that 3 balls are randomly selected from an urn containing 3 red, 4 white, and 
5 blue balls. If we let X and Y denote, respectively, the number of red and white balls 
chosen, then the joint probability mass function ofX and Y,p(i,J) = P{X = i, Y = j}, 
is given by 

p(O, 0) = ( ; ) I ( 132 ) = 2~0 

p(O, l) = ( i ) ( ; ) I ( 132 ) = 2~0 

p(O, 2) = ( i ) ( i ) I ( 132 ) = :2~ 
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p(O, 3) = ( ~ ) I ( 132 ) = 2~0 

p(l, o) = ( i) (;) I ( 132 ) = ;2°0 

p(l, l) = ( i) ( i) ( i) I ( 1}) = 2~00 

p(l, 2) = ( i) (~)I ( 132 ) = 2~0 
p(2• o) = ( ; ) ( i ) I ( ~ ) = 2~0 
p(2• 1) = (;) ( i) I ( 132 ) = 2~0 
p(3, 0) = ( ; ) I ( 1; ) = 2~0 

These probabilities can most easily be expressed in tabular form, as in Table 1. The 
reader should note that the probability mass function of Xis obtained by computing 
the row sums, whereas the probability mass function of Y is obtained by computing 
the column sums. Because the individual probability mass functions of X and Y 
thus appear in the margin of such a table, they are often referred to as the marginal 
probability mass functions of X and Y, respectively. • 

Table I P{X = i, Y = j}. 

~ 0 1 2 3 Row sum = P{X = i} 

0 
10 40 30 4 84 
- - -
220 220 220 220 220 

1 
30 60 18 

0 
108 

- - - -
220 220 220 220 

2 
15 12 

0 0 
27 

- - -
220 220 220 

3 
1 

0 0 0 
1 

- -
220 220 

Column sum = P{ Y = )} 
56 112 48 4 
- - -
220 220 220 220 

Suppose that 15 percent of the families in a certain community have no children, 20 
percent have 1 child, 35 percent have 2 children, and 30 percent have 3. Suppose 
further that in each family each child is equally likely (independently) to be a boy or 
a girl. If a family is chosen at random from this community, then B, the number of 
boys, and G, the number of girls, in this family will have the joint probability mass 
function shown in Table 2. 
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Table 2 P{B = i, G = j}. 

~ 0 1 2 3 Row sum = P{B = i} 

0 .15 .10 .0875 .0375 

1 .10 .175 .1125 0 

2 .0875 .1125 0 0 

3 .0375 0 0 0 

Column sum = P{ G = j} .3750 .3875 .2000 .0375 

The probabilities shown in Table 2 are obtained as follows: 

P{B = 0, G = O} = P{no children}= .15 

P{B = 0, G = 1} = P{l girl and total of 1 child} 

= P{l child}P{l girlll child}= (.20) (~) 
P{B = 0, G = 2} = P{2 girls and total of 2 children} 

.3750 

.3875 

.2000 

.0375 

= P{2 children}P{2 girlsl2 children}= (.35) (~Y 
We leave the verification of the remaining probabilities in the table to the reader. • 

We say that X and Y are jointly continuous if there exists a function f(x,y), 
defined for all real x and y, having the property that for every set C of pairs of real 
numbers (that is, C is a set in the two-dimensional plane), 

P{(X, Y) E C} = ff f(x,y) dx dy 

(x,y)eC 

(1.3) 

The function f (x, y) is called the joint probability density function of X and Y. If A 
and Bare any sets of real numbers, then by defining C = {(x,y) : x E A,y E B}, we 
see from Equation (1.3) that 

P{X EA, YE B} = fn £tcx,y)dx dy (1.4) 

Because 

F(a,b) = P{X E (-oo,a], YE (-oo,b]} 

= 1_:/_~f(x,y)dxdy 
it follows, upon differentiation, that 

a2 
f(a,b) = oa obF(a,b) 
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wherever the partial derivatives are defined. Another interpretation of the joint den
sity function, obtained from Equation (1.4), is 

rd+db 1a+da 
P{a<X<a+da,b<Y<b+db}=Jb a f(x,y)dxdy 

~ f(a,b)dadb 

when da and db are small andf(x,y) is continuous at a, b. Hence,f(a, b) is a measure 
of how likely it is that the random vector (X, Y) will be near (a, b). 

If X and Y are jointly continuous, they are individually continuous, and their 
probability density functions can be obtained as follows: 

where 

P{X EA}= P{X EA, YE (-00,00)} 

= { f00 f(x,y) dydx 
)A -oo 

= Ltx(x)dx 

fx(x) = /_:f(x,y) dy 

is thus the probability density function of X. Similarly, the probability density func
tion of Y is given by 

fy(y) = 1_:1<x.y) dx 

The joint density function of X and Y is given by 

0<X<00,0<y<oo 
otherwise 

Compute (a) P{X > 1, Y < 1}, (b) P{X < Y}, and (c) P{X < a}. 

Solution 

(a) 

(b) 

P{X > 1, Y < 1} = fo1 fi00 2e-xe-2Y dxdy 

= fo1 2e-2Y (-e-xr;:i) dy 

= e-1 fo 1 2e-2Y dy 

= e-1(1 - e-2) 

P{X < Y} = ff 2e-xe-2Y dx dy 

(x,y):x<y 

= fooo foy 2e-xe-2Y dx dy 

= fo 00 2e-2Y(1 - e-Y)dy 
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= fooo 2e-2Y dy - fooo 2e-3y dy 

2 
=1 - -

3 
1 

= 
3 

P{X < a}= foa fo00 2e-2Ye-x dydx 

= foa e-x dx 

= 1 - e-a • 
Consider a circle of radius R, and suppose that a point within the circle is randomly 
chosen in such a manner that all regions within the circle of equal area are equally 
likely to contain the point. (In other words, the point is uniformly distributed within 
the circle.) If we let the center of the circle denote the origin and define X and Y to 
be the coordinates of the point chosen (Figure 1 ), then, since (X, Y) is equally likely 
to be near each point in the circle, it follows that the joint density function of X and 
Yisgiven by 

for some value of c. 
(a) Determine c. 

{
c ifx2 +y2 :::;R2 

f (x, y) = 0 if x2 + y2 > R2 

(b) Find the marginal density functions of X and Y. 
(c) Compute the probability that D, the distance from the origin of the point 

selected, is less than or equal to a. 
(d) Find E [D]. 

y 

(0, 0) 

Figure I Joint probability distribution. 

Solution 
(a) Because 

1_:1_:f(x,y)dydx = 1 
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it follows that 

c ff dydx = 1 
x2+y2sR2 

We can evaluate f fx2+y2sR2 dy dx either by using polar coordinates or, 
more simply, by noting that it represents the area of the circle and is thus equal 
to H R2. Hence, 

1 
C=--

HR2 

fx(x) = j_:f(x,y) dy 

= _1_ [ dy 
H R2 Jx2+y2sR2 

=~lady, where a= ../R2 - x2 
HR -a _ 

= _2_2JR2 - x2 x2 s R2 
HR 

and it equals 0 when x2 > R2• By symmetry, the marginal density of Y is 
given by 

( c) The distribution function of D = ../ X2 + Y2, the distance from the origin, is 
obtained as follows: For 0 s a s R, 

Fv(a) = P{../X2 + Y2 s a} 

= P{X2 + Y2 s a2} 

= j j f(x,y) dy dx 

= H~2 ff dydx 
x2+y2s a2 

Ha2 

= HR2 

a2 

= R2 

where we have used the fact that ffx2+y2sa2 dydx is the area of a circle of 
radius a and thus is equal to Ha2• 

(d) From part (c), the density function of Dis 

2a 
fv(a) = R2 0 s a s R 
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Hence, 

2 loR 2R E[D] = - a2da = -
R2 o 3 

The joint density of X and Y is given by 

{ 
e-Cx+y) 0 < x < oo, 0 < y < oo 

f(x,y) = 0 otherwise 

Find the density function of the random variable X /Y. 

Solution We start by computing the distribution function of X /Y. For a > 0, 

Fx;y(a) = P{ ~ ::;; a} 
= ff e-(x+y) dx dy 

x/y s a 

= fooo foay e-(x+y) dx dy 

= fooo (l - e-ay)e-Y dy 

= {-e-Y + e-Ca+l)y } oo 
a+ 1 

0 
1 

=1- --
a+ 1 

• 

Differentiation shows that the density function of X /Y is given by fx;y(a) = 1/ 
(a + 1)2,0 < a < oo. • 

We can also define joint probability distributions for n random variables in 
exactly the same manner as we did for n = 2. For instance, the joint cumulative prob
ability distribution function F(a1, a2, ... , an) of then random variables X1, X2, . .. , Xn 
is defined by 

Further, the n random variables are said to be jointly continuous if there exists a 
function f(x1,x2, ... ,xn), called the joint probability density function, such that, for 
any set C in n-space, 

P{(X1,X2, .. .,Xn) EC}= ff .. J f(x1, .. .,Xn)dx1dx2 .. ·dxn 

(x1, ... ,Xn)EC 

In particular, for any n sets of real numbers Ai,A2, ... ,An, 



Example 
If 

Jointly Distributed Random Variables 

The multinomial distribution 

One of the most important joint distributions is the multinomial distribution, which 
arises when a sequence of n independent and identical experiments is performed. 
Suppose that each experiment can result in any one of r possible outcomes, with 

r 
respective probabilities pi,p2, ... ,p,, E Pi = 1. If we let Xi denote the number of 

i=l 
the n experiments that result in outcome number i, then 

P{X1=n1,X2=n2, ... ,X,=n,}= 7! 1 p71p;2 ···P~' (1.5) 
ni!n2. · · ·n,. 

r 
whenever E ni = n. 

i=l 
Equation (1.5) is verified by noting that any sequence of outcomes for the n 

experiments that leads to outcome i occurring ni times for i = 1, 2, ... , r will, by 
the assumed independence of experiments, have probability p71 p;2 ••• p~' of occur
ring. Because there are n!/(n1!n2! ... n,!) such sequences of outcomes (there are 
n ! /n1 ! ... n, ! different permutations of n things of which ni are alike, n2 are alike, 
... , n, are alike), Equation (1.5) is established. The joint distribution whose joint 
probability mass function is specified by Equation (1.5) is called the multinomial 
distribution. Note that when r = 2, the multinomial reduces to the binomial distri
bution. 

Note also that any sum of a fixed set of the Xjs will have a binomial distribu
tion. That is, if N C {1, 2, ... , r}, then LieN Xi will be a binomial random variable 
with parameters n and p = LieNPi· This follows because LieNXi represents the 
number of the n experiments whose outcome is in N, and each experiment will inde
pendently have such an outcome with probability LieN Pi· 

As an application of the multinomial distribution, suppose that a fair die is rolled 
9 times. The probability that 1 appears three times, 2 and 3 twice each, 4 and 5 once 
each, and 6 not at all is 

2 Independent Random Variables 
The random variables X and Y are said to be independent if, for any two sets of real 
numbers A and B, 

P{X EA, YE B} = P{X E A}P{Y EB} (2.1) 

In other words, X and Y are independent if, for all A and B, the events EA = 
{XE A} and FB ={YE B} are independent. 

It can be shown by using the three axioms of probability that Equation (2.1) will 
follow if and only if, for all a, b, 

P{X s a, Y s b} = P{X s a}P{Y s b} 

Hence, in terms of the joint distribution function F of X and Y, X and Y are inde
pendent if 

F(a, b) = F x(a)Fy(b) for all a, b . 
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When X and Y are discrete random variables, the condition of independence (2.1) 
is equivalent to 

p(x,y) = px(x)py(y) for all x,y (2.2) 

The equivalence follows because, if Equation (2.1) is satisfied, then we obtain Equa
tion (2.2) by letting A and B be, respectively, the one-point sets A = {x} and B = {y}. 
Furthermore, if Equation (2.2) is valid, then for any sets A, B, 

P{X EA, y EB}= L LP(X,y) 
yEBxEA 

= L LPx(x)py(y) 
yEBxEA 

= Lpy(y) LPx(x) 
yEB XEA 

= P{Y E B}P{X EA} 

and Equation (2.1) is established. 
In the jointly continuous case, the condition of independence is equivalent to 

f(x,y) =fx(x)fy(y) forallx,y 

Thus, loosely speaking, X and Y are independent if knowing the value of one 
does not change the distribution of the other. Random variables that are not inde
pendent are said to be dependent. 

Suppose that n + m independent trials having a common probability of success p are 
performed. If X is the number of successes in the first n trials, and Y is the number 
of successes in the final m trials, then X and Y are independent, since knowing the 
number of successes in the first n trials does not affect the distribution of the number 
of successes in the final m trials (by the assumption of independent trials). In fact, 
for integral x and y, 

P{X =x, Y =y} = ( ~ )px(l - p)n-x (; )pY(l - pr-y 

= P{X = x}P{Y = y} 

In contrast, X and Z will be dependent, where Z is the total number of successes in 
the n + m trials. (Why?) • 

Suppose that the number of people who enter a post office on a given day is a Pois
son random variable with parameter A.. Show that if each person who enters the post 
office is a male with probability panda female with probability 1 - p, then the num
ber of males and females entering the post office are independent Poisson random 
variables with respective parameters A.p and A.(1 - p). 

Solution Let X and Y denote, respectively, the number of males and females that 
enter the post office. We shall show the independence of X and Y by establishing 
Equation (2.2). To obtain an expression for P{X = i, Y = j}, we condition on X + Y 
as follows: 

P{X = i, Y = j} = P{X = i, Y = j\X + Y = i + j}P{X + Y = i + j} 

+ P{X = i, Y = j\X + Y * i + j}P{X + Y * i + j} 



Example 
2c 

Jointly Distributed Random Variables 

[Note that this equation is merely a special case of the formula P(E) = P(E\F)P(F) + 
P(EIP:)P(P:).] 

Since P{X = i, Y = jlX + Y -=/- i + j} is clearly 0, we obtain 

P{X = i, Y = j} = P{X = i, Y = jlX + Y = i + j}P{X + Y = i + j} (2.3) 

Now, because X + Y is the total number of people who enter the post office, it 
follows, by assumption, that 

)._i+j 
P{X + Y = i + j} = e-}., C ")' 

l + J . 
(2.4) 

Furthermore, given that i + j people do enter the post office, since each person 
entering will be male with probability p, it follows that the probability that exactly 
i of them will be male (and thus j of them female) is just the binomial probability 

( i ~ j) pi(l - p'j. That is, 

P{X = i, Y = jlX + Y = i + j} = c ~ j) /(1 ~ p'f (2.5) 

Substituting Equations (2.4) and (2.5) into Equation (2.3) yields 

Hence, 

( 
i + . ) . . )._i+j 

P{X = i, y =j} = i 1 p1(1 - p)'e-}., (i + j)! 

= -A () .. p )i (A.(1 - )y· 
e ·1·1 p 

l.J. 
A . . = e- P(.A.p)' e-A(l-p) [). .. (1 - p)y ., ., 

l. 1· 
(2.6) 

P{X = i} = e-Ap (.A.p)i '°' e-A(l-p) [). .. (l - p)y = e-Ap (.A.p)i (2.7) 
i! ~ j! i! 

J 

and similarly, 

(2.8) 

Equations (2.6), (2.7), and (2.8) establish the desired result. • 
A man and a woman decide to meet at a certain location. If each of them indepen
dently arrives at a time uniformly distributed between 12 noon and 1 P.M., find the 
probability that the first to arrive has to wait longer than 10 minutes. 

Solution If we let X and Y denote, respectively, the time past 12 that the man and 
the woman arrive, then X and Y are independent random variables, each of which is 
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uniformly distributed over (0, 60). The desired probability, P{X + 10 < Y} + P{Y + 
10 < X}, which, by symmetry, equals 2P{X + 10 < Y}, is obtained as follows: 

2P{X + 10 < Y} = 2 ff f(x,y)dxdy 

x+lO<y 

= 2 J J fx(x)fy(y) dx dy 

x+lO<y 

= 2 tj) r-10 (_!._)2 dx dy 
110 lo 60 
2 {60 

= (60)2 110 (y - lO) dy 

25 • =-
36 

Our next example presents the oldest problem dealing with geometrical prob
abilities. It was first considered and solved by Buffon, a French naturalist of the 
eighteenth century, and is usually referred to as Bufton 's needle problem. 

Buffon's needle problem 

A table is ruled with equidistant parallel lines a distance D apart. A needle of 
length L, where L :5 D, is randomly thrown on the table. What is the probability 
that the needle will intersect one of the lines (the other possibility being that the 
needle will be completely contained in the strip between two lines)? 

Solution Let us determine the position of the needle by specifying (1) the distance X 
from the middle point of the needle to the nearest parallel line and (2) the angle () 
between the needle and the projected line of length X. (See Figure 2.) The needle 
will intersect a line if the hypotenuse of the right triangle in Figure 2 is less than 
L/2-that is, if 

X L 
cos() < 2 

L 
or X < 2 cos8 

Figure 2 

As X varies between 0 and D /2 and () between 0 and rr /2, it is reasonable to assume 
that they are independent, uniformly distributed random variables over these respec
tive ranges. Hence, 
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P{x < ~cose} = J J fx(x)fo(y)dxdy 

X<L/2cosy 

4 lorr/2 loL/2cosy 
= - dxdy 

rrD o o 
4 lorr/2 L 

= - -cosydy 
rrD o 2 
2L • =-
rrD 

Characterization of the normal distribution 

Let X and Y denote the horizontal and vertical miss distances when a bullet is fired 
at a target, and assume that 

1. X and Y are independent continuous random variables having differentiable 
density functions. 

2. The joint density f(x,y) = fx(x)fy(y) of X and Y depends on (x, y) only 
through x2 + y2. 

Loosely put, assumption 2 states that the probability of the bullet landing on any 
point of the x-y plane depends only on the distance of the point from the target and 
not on its angle of orientation. An equivalent way of phrasing this assumption is to 
say that the joint density function is rotation invariant. 

It is a rather interesting fact that assumptions 1 and 2 imply that X and Y are 
normally distributed random variables. To prove this, note first that the assumptions 
yield the relation 

f (x, y) = fx(x)fy(y) = g(x2 + y2) 

for some function g. Differentiating Equation (2.9) with respect to x yields 

fSc(x)fy(y) = 2xg' (x2 + y2) 

Dividing Equation (2.10) by Equation (2.9) gives 

fSc(x) 2xg'(x2 + y2) 

fx(x) = g(x2 + y2) 

or 
fSc(x) g'(x2 + y2) ----'-''------- = 

2xfx(x) g(x2 + y2) 

(2.9) 

(2.10) 

(2.11) 

Because the value of the left-hand side of Equation (2.11) depends only on x, 
whereas the value of the right-hand side depends on x2 + y2, it follows that the left
hand side must be the same for all x. To see this, consider any x1,x2 and let y1,y2 be 
such that xi + YI = x~ + y~. Then, from Equation (2.11), we obtain 

Hence, 

fSc<x1) _ g'(xi + YI) g'(x~ + Y~) 
2xifx(x1) - g(xi + YI) = g(x~ + y~) 

!Sc<xz) 

2xzfx(xz) 

fSc(x) 
-- =c or 
xfx(x) 

d 
dx (logfx(x)) =ex 
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which implies, upon integration of both sides, that 

cx2 x2 
logfx(x) = a + T or fx(x) = kec 12 

Since f:ofx(x) dx = 1, it follows that c is necessarily negative, and we may write 
c = -1/a2• Thus, 

fx(x) = ke-x2 /2u2 

That is, X is a normal random variable with parameters µ, = 0 and a 2• A similar 
argument can be applied to fy(y) to show that 

1 2;'202 fy(y) = --e-Y 
,.fi;a 

Furthermore, it follows from assumption 2 that a 2 = a2 and that X and Y are thus 
independent, identically distributed normal random variables with parameters µ, = 0 
anda2 • • 

A necessary and sufficient condition for the random variables X and Y to be 
independent is for their joint probability density function (or joint probability mass 
function in the discrete case) f(x, y) to factor into two terms, one depending only on 
x and the other depending only on y. 

The continuous (discrete) random variables X and Y are independent if and only if 
their joint probability density (mass) function can be expressed as 

fx,y(x,y) = h(x)g(y) -oo < x < oo, -oo < y < 00 

Proof Let us give the proof in the continuous case. First, note that independence 
implies that the joint density is the product of the marginal densities of X and Y, so 
the preceding factorization will hold when the random variables are independent. 
Now, suppose that 

Then 

fx,y(x,y) = h(x)g(y) 

1 = 1_: J_:tx,Y(x,y) dx dy 

= 1_: h(x) dx 1_: g(y) dy 

= C1C2 

where C1 = f~00 h(x) dx and C2 = f~g(y) dy. Also, 

fx(x) = 1_: fx,y(x, y) dy = C2h(x) 

fy(y) = J_:tx,y(x,y) dx = C1g{y) 

Since C1 C2 = 1, it follows that 

fx,y(x,y) = fx(x)fy(y) 

and the proof is complete. 0 
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If the joint density function of X and Y is 

0 < x < oo, 0 < y < 00 

and is equal to 0 outside this region, are the random variables independent? What if 
the joint density function is 

f(x,y) = 24xy 0 < x < 1,0 < y < 1, 0 < x + y < 1 

and is equal to 0 otherwise? 

Solution In the first instance, the joint density function factors, and thus the random 
variables, are independent (with one being exponential with rate 2 and the other 
exponential with rate 3). In the second instance, because the region in which the 
joint density is nonzero cannot be expressed in the form x E A,y E B, the joint 
density does not factor, so the random variables are not independent. This can be 
seen clearly by letting 

l(x,y) = { ~ if 0 < x < 1, 0 < y < 1, 0 < x + y < 1 
otherwise 

and writing 
f(x,y) = 24xy l(x,y) 

which clearly does not factor into a part depending only on x and another depending 
onlyony. • 

The concept of independence may, of course, be defined for more than two 
random variables. In general, then random variables X1,X2, ... ,Xn are said to be 
independent if, for all sets of real numbers Ai,A2, ... ,An, 

n 

P{X1 E Ai,X2 E A2, ... ,Xn EAn} = n P{Xi eAi} 
i=l 

As before, it can be shown that this condition is equivalent to 

n 

= n P{Xi :s; ai} for all ai,a2, ... ,an 
i=l 

Finally, we say that an infinite collection of random variables is independent if every 
finite subcollection of them is independent. 

How can a computer choose a random subset? 

Most computers are able to generate the value of, or simulate, a uniform (0, 1) 
random variable by means of a built-in subroutine that (to a high degree of approxi
mation) produces such "random numbers." As a result, it is quite easy for a computer 
to simulate an indicator (that is, a Bernoulli) random variable. Suppose I is an indi
cator variable such that 

P{l = 1} = p = 1 - P{l = O} 

The computer can simulate I by choosing a uniform (0, 1) random number U and 
then letting 

1 _1ifU<p 
-OifU~p 
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Suppose that we are interested in having the computer select k, k s n, of the num

bers 1, 2, ... , n in such a way that each of the ( ~) subsets of size k is equally likely 

to be chosen. We now present a method that will enable the computer to solve this 
task. To generate such a subset, we will first simulate, in sequence, n indicator vari
ables Ii, h ... , In, of which exactly k will equal 1. Those i for which Ii = 1 will then 
constitute the desired subset. 

To generate the random variables Ji, ... ,ln, start by simulating n independent 
uniform (0, 1) random variables U1, U2, ... , Un. Now define 

. k 
tf U1 < -

n 
otherwise 

and then, once Ii, . .. , Ii are determined, recursively set 

otherwise 

In words, at the (i + l)th stage, we set Ii+l equal to 1 (and thus put i + 1 into 
the desired subset) with a probability equal to the remaining number of places in 

the subset (namely, k - t Ij) , divided by the remaining number of possibilities 
J=l 

(namely, n - i). Hence, the joint distribution of Ji,]z, ... ,ln is determined from 

k 
P{/1=1} = -

n 

j=l 
PUi+l = 11/i, ... ,Id=---

n - i 
1 < i < n 

The proof that the preceding formula results in all subsets of size k being equally 
likely to be chosen is by induction on k + n. It is immediate when k + n = 2 (that 
is, when k = 1,n = 1), so assume it to be true whenever k + n s l. Now, suppose 
that k + n = l + 1, and consider any subset of size k-say, ii s iz s · · · s ik-and 
consider the following two cases. 

Case 1: ii= 1 

P{/i = h2 = · · · = Iik = 1,/j = 0 otherwise} 

= P{/i = 1}P{/i2 = · · · = Iik = 1,/j = 0 otherwiselli = 1} 

Now given that Ii = 1, the remaining elements of the subset are chosen as if a 
subset of size k - 1 were to be chosen from then - 1 elements 2, 3, ... , n. Hence, by 
the induction hypothesis, the conditional probability that this will result in a given 

subset of size k - 1 being selected is 1/ ( ~ = ~ ) . Hence, 

P{/i = Ii2 = · · · = Iik = 1,/j = 0 otherwise} 
k 1 1 

~~(~=n ~ (~) 
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Case2: ii -::F 1 

P{li1 = li2 = · · · = Iik = 1,lj = 0 otherwise} 

= P{li1 = · · · = Iik = 1, Ij = 0 otherwise Iii = O}P{/1 = O} 

= ( n ~ 1) (i - ~) = (;) 

where the induction hypothesis was used to evaluate the preceding conditional prob
ability. 

Thus, in all cases, the probability that a given subset of size k will be the subset 

chosen is 1/ ( ~). • 

Remark The foregoing method for generating a random subset has a very low 
memory requirement. (The latter algorithm uses the last k elements of a random 
permutation of 1, 2, ... , n.) • 

Let X, Y, Z be independent and uniformly distributed over (o, 1). Compute 
P{X ~ YZ}. 

Solution Since 

fx,Y,z(x,y,z) =fx(x)fy(y)fz(z) = 1 0 :5 x :5 1,0 :5 y :5 1,0 :5 z :5 1 

we have 

P{X ~ YZ} = J J J fx, Y,z(x,y,z)dxdydz 
x2'yz 

= f 1 f 1 f 1 dxdydz 
lo lo lyz 

= fo1 fo\1 - yz)dydz 

3 
=-

4 

Probabilistic interpretation of half-life 

• 

Let N(t) denote the number of nuclei contained in a radioactive mass of material at 
time t. The concept of half-life is often defined in a deterministic fashion by stating 
this it is an empirical fact that, for some value h, called the half-life, 

N(t) = z-t!hN(O) t > 0 

[Note that N(h) = N(0)/2.] Since the preceding implies that, for any nonnegative s 
andt, 

N(t + s) = z-<s+t)fhN(O) = z-t!hN(s) 
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it follows that no matter how much time s has already elapsed, in an additional time 
t, the number of existing nuclei will decrease by the factor 2-t/h. 

Because the deterministic relationship just given results from observations of 
radioactive masses containing huge numbers of nuclei, it would seem that it might 
be consistent with a probabilistic interpretation. The clue to deriving the appropriate 
probability model for half-life resides in the empirical observation that the propor
tion of decay in any time interval depends neither on the total number of nuclei at 
the beginning of the interval nor on the location of this interval [since N(t + s)/N(s) 
depends neither on N(s) nor on s]. Thus, it appears that the individual nuclei act inde
pendently and with a memoryless life distribution. Consequently, since the unique 
life distribution that is memoryless is the exponential distribution, and since exactly 
one-half of a given amount of mass decays every h time units, we propose the fol
lowing probabilistic model for radioactive decay. 

Probabilistic interpretation of the half ·life h: The lifetimes of the individual nuclei 
are independent random variables having a life distribution that is exponential with 
median equal to h. That is, if L represents the lifetime of a given nucleus, then 

P{L < t} = 1 - z-t!h 

(Because P{L < h} = ! and the preceding can be written as 

P{L < t} = 1 - exp {-t10!2 } 

it can be seen that L indeed has an exponential distribution with median h.) 
Note that under the probabilistic interpretation of half-life just given, if one 

starts with N(O) nuclei at time 0, then N(t), the number of nuclei that remain at 
time twill have a binomial distribution with parameters n = N(O) and p = 2-tfh. It 
can be shown that this interpretation of half-life is consistent with the deterministic 
model when considering the proportion of a large number of nuclei that decay over 
a given time frame. However, the difference between the deterministic and proba
bilistic interpretation becomes apparent when one considers the actual number of 
decayed nuclei. We will now indicate this with regard to the question of whether 
protons decay. 

There is some controversy over whether or not protons decay. Indeed, one the
ory predicts that protons should decay with a half-life of about h = 1Cl3° years. To 
check this prediction empirically, it has been suggested that one follow a large num
ber of protons for, say, one or two years and determine whether any of them decay 
within that period. (Clearly, it would not be feasible to follow a mass of protons for 
1Cl3° years to see whether one-half of it decays.) Let us suppose that we are able to 
keep track of N(O) = 1030 protons for c years. The number of decays predicted by 
the deterministic model would then be given by 

N(O) - N(c) = h(l - z-clh) 

1 - 2-c/h 
=----

1/h 
1 - 2-cx 

~ lim ---
x~o x 

= lim (cz-cx log2) 
x~O 

= clog 2 ~ .693lc 

since ~ = 10-30 ~ O 
h 

by L'Hopital's rule 
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For instance, the deterministic model predicts that in 2 years there should be 1.3863 
decays, and it would thus appear to be a serious blow to the hypothesis that protons 
decay with a half-life of 1030 years if no decays are observed over those 2 years. 

Let us now contrast the conclusions just drawn with those obtained from the 
probabilistic model. Again, let us consider the hypothesis that the half-life of 
protons is h = 1030 years, and suppose that we follow h protons for c years. Since 
there is a huge number of independent protons, each of which will have a very small 
probability of decaying within this time period, it follows that the number of protons 
that decay will have (to a very strong approximation) a Poisson distribution with 
parameter equal to h(l - 2-cfh) Ri clog 2. Thus, 

and, in general, 

P{O decays}= e-clogZ 

= e- log(2c) = .!._ 
2c 

2-c[clog 2]n 
P{n decays} = ----

n! 
n~O 

Thus, we see that even though the average number of decays over 2 years is (as 
predicted by the deterministic model) 1.3863, there is 1 chance in 4 that there will 
not be any decays, thereby indicating that such a result in no way invalidates the 
original hypothesis of proton decay. • 

Remark Independence is a symmetric relation. The random variables X and Y are 
independent if their joint density function (or mass function in the discrete case) is 
the product of their individual density (or mass) functions. Therefore, to say that 
Xis independent of Y is equivalent to saying that Y is independent of X -or just 
that X and Y are independent. As a result, in considering whether X is independent 
of Y in situations where it is not at all intuitive that knowing the value of Y will 
not change the probabilities concerning X, it can be beneficial to interchange the 
roles of X and Y and ask instead whether Y is independent of X. The next example 
illustrates this point. • 

If the initial throw of the dice in the game of craps results in the sum of the dice 
equaling 4, then the player will continue to throw the dice until the sum is either 4 
or 7. If this sum is 4, then the player wins, and if it is 7, then the player loses. Let N 
denote the number of throws needed until either 4 or 7 appears, and let X denote the 
value (either 4 or 7) of the final throw. Is N independent of X? That is, does knowing 
which of 4 or 7 occurs first affect the distribution of the number of throws needed 
until that number appears? Most people do not find the answer to this question to 
be intuitively obvious. However, suppose that we turn it around and ask whether X 
is independent of N. That is, does knowing how many throws it takes to obtain a 
sum of either 4 or 7 affect the probability that that sum is equal to 4? For instance, 
suppose we know that it takes n throws of the dice to obtain a sum of either 4 or 
7. Does this affect the probability distribution of the final sum? Clearly not, since 
all that is important is that its value is either 4 or 7, and the fact that none of the 
first n - 1 throws were either 4 or 7 does not change the probabilities for the nth 
throw. Thus, we can conclude that Xis independent of N, or equivalently, that N is 
independent of X. 

As another example, let X1, Xz, ... be a sequence of independent and identically 
distributed continuous random variables, and suppose that we observe these random 
variables in sequence. If Xn > Xi for each i = 1, ... , n - 1, then we say that Xn is 
a record value. That is, each random variable that is larger than all those preceding 
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it is called a record value. Let An denote the event that Xn is a record value. Is An+l 
independent of An? That is, does knowing that the nth random variable is the largest 
of the first n change the probability that the (n + 1) random variable is the largest 
of the first n + 1? While it is true that An+l is independent of An, this may not be 
intuitively obvious. However, if we turn the question around and ask whether An is 
independent of An+l• then the result is more easily understood. For knowing that 
the (n + 1) value is larger than X1, ... ,Xn clearly gives us no information about 
the relative size of Xn among the first n random variables. Indeed, by symmetry, it is 
clear that each of these n random variables is equally likely to be the largest of this 
set, so P(AnlAn+1) = P(An) = l/n. Hence, we can conclude that An and An+l are 
independent events. • 

Remark It follows from the identity 

P{X1 ::5 a1, ... ,Xn ::5 an} 

= P{X1 ::5 ai}P{X2 ::5 a2IX1 ::5 ai} · · · P{Xn ::5 anlX1 ::5 a1, ... ,Xn-l ::5 an-d 

that the independence of X1, ... , Xn can be established sequentially. That is, we can 
show that these random variables are independent by showing that 

X2 is independent of X1 
X3 is independent of X1, X2 
X4 is independent of X1, X2, X3 

Xn is independent of Xi, ... , Xn-l 

3 Sums of Independent Random Variables 
It is often important to be able to calculate the distribution of X + Y from the 
distributions of X and Y when X and Y are independent. Suppose that X and Y are 
independent, continuous random variables having probability density functions fx 
and fy. The cumulative distribution function of X + Y is obtained as follows: 

Fx+y(a) = P{X + Y ::5 a} 

= J J fx(x)fy(y) dx dy 

x+y:s;a 

l oo la-y 
= _

00 
_

00 
fx(x)fy(y) dx dy 

l oo la-y = _
00 

_
00 

fx(x) dxfy(y) dy 

= 1_: Fx(a - y)fy(y) dy (3.1) 

The cumulative distribution function Fx+Y is called the convolution of the distribu
tions Fx and Fy (the cumulative distribution functions of X and Y, respectively). 

By differentiating Equation (3.1), we find that the probability density function 
fx+Y of X + Y is given by 
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d 100 fx+y(a) = -d Fx(a - y)fy(y) dy 
a -oo 

100 d = -d Fx(a - y)fy(y) dy 
-oo a 

= /_:fx(a - y)fy(y) dy (3.2) 

3.1 Identically Distributed Uniform Random Variables 

It is not difficult to determine the density function of the sum of two independent 
uniform (0, 1) random variables. 

Sum of two independent uniform random variables 

If X and Y are independent random variables, both uniformly distributed on (0, 1), 
calculate the probability density of X + Y. 

Solution From Equation (3.2), since 

we obtain 

llO<a<l 
fx(a) = fy(a) = 0 otherwise 

fx+y(a) = fo 1 fx(a - y) dy 

For 0 :5 a :5 1, this yields 

For 1 < a < 2, we get 

Hence, 

fx+y(a) = loa dy =a 

fx+y(a) = f 1 dy = 2 - a 
la-I 

frn(a) ~ { ~ - a 

0:5a:5l 
1 <a< 2 
otherwise 

Because of the shape of its density function (see Figure 3), the random variable X + 
Y is said to have a triangular distribution. • 

f(a) 

1 

Figure 3 Triangular density function. 
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Now, suppose that Xi.X2, ... ,Xn are independent uniform (0, 1) random variables, 
and let 

Fn(x) = P{X1 + ... + Xn ::5 x} 

Whereas a general formula for Fn(x) is messy, it has a particularly nice form when 
x ::5 1. Indeed, we now use mathematical induction to prove that 

Fn(X) = ~ /n!, 0 ::5 x ::5 1 

Because the proceeding equation is true for n = 1, assume that 

Fn-1(x) = ~-l /(n - 1)!, 0 ::5 x ::5 1 

Now, writing 
n n-1 

LXi= LXi + Xn 
i=l i=l 

and using the fact that the Xi are all nonnegative, we see from Equation 3.1 that, for 
0 ::5 x ::5 1, 

Fn(X) =fol Fn-1(x - y)fxn(y)dy 

= (x - yr-1 dy 1 fox 
(n - 1)! o 

by the induction hypothesis 

=~/n! 

which completes the proof. 
For an interesting application of the preceding formula, let us use it to determine 

the expected number of independent uniform (0, 1) random variables that need to 
be summed to exceed 1. That is, with X1,X2, ... being independent uniform (0, 1) 
random variables, we want to determine E[N], where 

N = min{n : X1 + ... + Xn > 1} 

Noting that N is greater than n > 0 if and only if X1 + ... + Xn ::5 1, we see that 

P{N > n} = Fn(l) = 1/n!, n > 0 

Because 
P{N > O} = 1 = 1/0! 

we see that, for n > 0, 

1 
P{N = n} = P{N > n - 1} - P{N > n} = l 

(n - )! 

1 n - 1 
-=--
n! n! 

Therefore, 

E[N] = f, n(n - 1) 
n=l n! 

00 1 

=I: <n - 2)1 
n=2 

=e 

That is, the mean number of independent uniform (0, 1) random variables that must 
be summed for the sum to exceed 1 is equ.al to e. 
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3 .2 Gamma Random Variables 

A gamma random variable has a density of the form 

A.e-'-Y(A.y)t-1 
f(y) = r(t) o < y < oo 

An important property of this family of distributions is that for a fixed value of A., it 
is closed under convolutions. 

If X and Y are independent gamma random variables with respective parameters 
(s, A.) and (t, A.), then X + Y is a gamma random variable with parameters (s + t, A.). 

Proof Using Equation (3.2), we obtain 

fx+y(a) = f(s~r(t) foa A.e-'-(a-y)[A.(a - y)y-1 A.e-'-Y(J-.y)t-1 dy 

= Ke-'-a foa (a - y)s-ly'-ldy 

= Ke-'-atf+t-l fo 1 (1 - x)s-lxt-l dx by letting~x = ~ 
= ce-'-aas+t-l 

where C is a constant that does not depend on a. But, as the preceding is a density 
function and thus must integrate to 1, the value of C is determined, and we have 

A.e-'-a(A.a)s+t-1 
!x+y(a) = r(s + t) 

Hence, the result is proved. D 

It is now a simple matter to establish, by using Proposition 3.1 and induction, 
that if Xi, i = 1, ... , n are independent gamma random variables with respective 

parameters (ti, A.), i = 1, ... , n, then iE Xi is gamma with parameters (ti ti, A.). We 

leave the proof of this statement as an exercise. 

Let X1, X2, ... , Xn be n independent exponential random variables, each having 
parameter A.. Then, since an exponential random variable with parameter A. is the 
same as a gamma random variable with parameters (l,A.), it follows from Proposi
tion 3.1 that X 1 + X2 + · · · + Xn is a gamma random variable with parameters 
(n,A.). • 

If Z1, Z2, ... , Zn are independent standard normal random variables, then Y = 
n 
L zf is said to have the chi-squared (sometimes seen as x2) distribution with n 
i=l 
degrees of freedom. Let us compute the density function of Y. In the following equa-
tion, when n = 1, Y = Zi, we see that its probability density function is given by 

1 
fzi(y) = 2,JYffz(JY) + fz(-JY)] 

= _1 ___ 2_e-y/2 
2.JY,.,fii 
!e-y/2(y 12)112-1 

.;rr 
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But we recognize the preceding as the gamma distribution with parameters 

0· !). [A by-product of this analysis is that r 0) = Jif.] But since each z; is 

gamma ( ~, ~), it follows from Proposition 3: 1 that the chi-squared distribution with 

n degrees of freedom is just the gamma distribution with parameters ( n/2, ~) and 
hence has a probability density function given by 

1 _ 2 (Y)n/2-1 -e YI _ 
2 2 

fy(y) = r (~) y > 0 

e-yf2ynf2-1 
= 

2n/2r (~) 
y > 0 

When n is an even integer, r(n/2) = [(n/2) - 1]!, whereas when n is odd, r(n/2) can 
be obtained from iterating the relationship r(t) = (t - l)r(t - 1) and then using 

the previously obtained result that r (!) = Jif. [For instance, r (~) = ~r (n = 

Hr(!)= iJif.1 
In practice, the chi-squared distribution often arises as the distribution of the 

square of the error involved when one attempts to hit a target inn-dimensional space 
when the coordinate errors are taken to be independent standard normal random 
variables. It is also important in statistical analysis. 

3.3 Normal Random Variables 

We can also use Equation (3.2) to prove the following important result about normal 
random variables. 

If Xi, i = 1, ... , n, are independent random variables that are normally distributed 
n 

with respective parameters f.Li, ol, i = 1, ... , n, then I: Xi is normally distributed 
i=l 

n n 
with parameters I: f.Li and I: al. 

i=l i=l 

Proof of Proposition 3.2: To begin, let X and Y be independent normal random 
variables with X having mean 0 and variance a 2 and Y having mean 0 and variance 
1. We will determine the density function of X + Y by utilizing Equation (3.2). 
Now, with 

1 1 1 + a 2 

c = 2a2 + 2 = 2a2 

we have 

1 { (a - y)2 I 1 { y2 I fx(a - y)fy(y) = $a exp - 2a2 ./ii exp -2 . 

= - 1 exp {-~1 exp {-c (l - 2y a )j 
21'<r 2a2 1 + a2 
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Hence, from Equation (3.2), 

!x+y(a) = 2~u exp {-2:2} exp { 2u2(1a~ u2)} 

x 1: exp {-c (y - 1 : (12 r} dy 

= _21 exp {- 1 a2 2 } Joo exp{-cx2}dx 
1rl1 2( + l1 ) -co 

= C exp {-2(1 : u2) } 

where C does not depend on a. But this implies that X + Y is normal with mean 0 
and variance 1 + u2. 

Now, suppose that X1 and X2 are independent normal random variables with Xi 
having mean l"i and variance u;2, i = 1, 2. Then 

( X1 - 1"1 X2 - µ,2) 
X1 + X2 = u2 + + 1"1 + µ,2 

l12 l12 ~ 

But since (X1 - µ,1)/u2 is normal with mean 0 and variance uf /uf, and (X2 - µ,2)/u2 
is normal with mean 0 and variance 1, it follows from our previous result that (X1 -
µ,1)/u2 + (X2 - µ,2)/u2 is normal with mean 0 and variance 1 + uf /uf, implying 
that Xi + X2 is normal with mean µ,i + µ,2 and variance uf(l +at /uf) =at + uf. 

Thus, Proposition 3.2 is established when n = 2. The general case now follows by 
induction. That is, assume that Proposition 3.2 is true when there are n - 1 random 
variables. Now consider the case of n, and write 

n n-1 

L Xi= LXi + Xn 
i=l i=l 

n-1 n-1 n-1 
By the induction hypothesis, L Xi is normal with mean L l"i and variance L ul-

i=l i=l i=l 
n n 

Therefore, by the result for n = 2, L Xi is normal with mean L µ,; and variance 
i=l i=l 

A basketball team will play a 44-game season. Twenty-six of these games are against 
class A teams and 18 are against class B teams. Suppose that the team will win each 
game against a class A team with probability .4 and will win each game against a 
class B team with probability .7. Suppose also that the results of the different games 
are independent. Approximate the probability that 

(a) the team wins 25 games or more; 
(b) the team wins more games against class A teams than it does against class B 

teams. 

Solution (a) LetXA andXB respectively denote the number of games the team wins 
against class A and against class B teams. Note that XA and XB are independent 
binomial random variables and 

E[XA] = 26(.4) = 10.4 Var(XA) = 26(.4)(.6) = 6.24 

E[X8 ] = 18(.7) = 12.6 Var(XB) = 18(.7)(.3) = 3.78 
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By the normal approximation to the binomial, XA and Xs will have approximately 
the same distribution as would independent normal random variables with the pre
ceding expected values and variances. Hence, by Proposition 3.2, XA + Xs will have 
approximately a normal distribution with mean 23 and variance 10.02. Therefore, 
letting Z denote a standard normal random variable, we have 

P{XA + Xs ;?; 25} = P{XA + Xs ;?; 24.5} 

= p { XA + Xs - 23 ;::-: 24.5 - 23} 
v'l0.02 v'l0.02 

~ P{z ;::-: ~} 
~ 1 - P{Z < .4739} 

~ .3178 

(b) We note that XA - Xs will have approximately a normal distribution with 
mean -2.2 and variance 10.02. Hence, 

P{XA - Xs ;?; 1} = P{XA - Xs ;?; .5} 

= p { XA - Xs + 2.2 ;::-: 
v'l0.02 

~P{Z> 2.7 } 
- J10.02 

~ 1 - P{Z < .8530} 

~ .1968 

.5 + 2.2} 
v'l0.02 

Therefore, there is approximately a 31.78 percent chance that the team will win at 
least 25 games and approximately a 19.68 percent chance that it will win more games 
against class A teams than against class B teams. • 

The random variable Y is said to be a lognormal random variable with param
etersµ, and a if log (Y) is a normal random variable with meanµ, and variance a 2. 

That is, Y is lognormal if it can be expressed as 

where X is a normal random variable. 

Starting at some fixed time, let S(n) denote the price of a certain security at the 
end of n additional weeks, n ;::-: 1. A popular model for the evolution of these prices 
assumes that the price ratios S(n)/S(n - 1),n ;::-: 1, are independent and identically 
distributed lognormal random variables. Assuming this model, with parametersµ, = 
.0165, a = .0730, what is the probability that 

(a) the price of the security increases over each of the next two weeks? 
(b) the price at the end of two weeks is higher than it is today? 

Solution Let Z be a standard normal random variable. To solve part (a), we use the 
fact that log(x) increases inx to conclude thatx > 1 if and only iflog(x) > log(l) = 0. 
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As a result, we have 

p { ~~~~ > 1 l = p {log ( ~~~D > o} 
= P {z -.0165} 

> .0730 

= P{Z < .2260} 

= .5894 

In other words, the probability that the price is up after one week is .5894. Since the 
successive price ratios are independent, the probability that the price increases over 
each of the next two weeks is (.5894)2 = .3474. 

To solve part (b ), we reason as follows: 

p{S(2) > l} =P{S(2)S(1) > l} 
S(O) S(l) S(O) 

{ ( S(2)) (S(l)) } = P log S(l) + log S(O) >-O 

However, log ( ~) + log (~),being the sum of two independent normal random 
variables with a common mean .0165 and a common standard deviation .0730, is a 
normal random variable with mean .0330 and variance 2(.0730)2. Consequently, 

p{S(2) > l} =P{z > -.0330} 
S(O) .0730./2 

= P{Z < .31965} 

= .6254 • 
3.4 Poisson and Binomial Random Variables 

Rather than attempt to derive a general expression for the distribution of X + Y in 
the discrete case, we shall consider some examples. 

Sums of independent Poisson random variables 

If X and Y are independent Poisson random variables with respective parameters 
A.1 and A.2, compute the distribution of X + Y. 

Solution Because the event {X + Y = n} may be written as the union of the disjoint 
events {X = k, Y = n - k}, 0 ::5 k ::5 n, we have 

n 

P{X + Y =n} = LP{X=k, Y= n - k} 
k=O 

n 

= LP{X=k}P{Y=n - k} 
k=O 

n }..k }..n-k 
_ " -Al _l -A2 _..::.2 __ - f;;{ k! e (n - k) ! 
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Thus, X + X has a Poisson distribution with parameter .A.1 + .A.z. • 
Sums of independent binomial random variables 

Let X and Y be independent binomial random variables with respective parameters 
(n,p) and (m,p). Calculate the distribution of X + Y. 

Solution According to the interpretation of a binomial random variable, and with
out any computation at all, we i;an immediately conclude that X + Y is binomial 
with parameters (n + m,p). This follows because X represents the number of suc
cesses in n independent trials, each of which results in a success with probability 
p; similarly, Y represents the number of successes in m independent trials, each of 
which results in a success with probability p. Hence, given that X and Y are assumed 
independent, it follows that X + Y represents the number of successes in n + m 
independent trials when each trial has a probability p of resulting in a success. There
fore, X + Y is a binomial random variable with parameters (n + m,p). To check 
this conclusion analytically, note that 

n 

P{X + y = k} = L P{X = i, y = k - i} 
i=O 
n 

= LP{X=i}P{Y=k - i} 

i=O 

_ f-( n) i n-i ( m ) k-i,.m-k+i 
-~ i pq k-i p 'l 

i=O 

where q = 1 - p and where (;) = 0 whenj < 0. Thus, 

P{X + y = k} = pk~+m-k ~ ( 7) ( k ~ i) 

and the conclusion follows upon application of the combinatorial identity 

• 
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4 Conditional Distributions: Discrete Case 

Example 
4a 

For any two events E and F, the conditional probability of E given F is defined, 
provided that P(F) > 0, by 

p EF _ P(EF) 
( I ) - P(F) 

Hence, if X and Y are discrete random variables, it is natural to define the condi
tional probability mass function of X given that Y = y, by 

Px1Y(xly) = P{X = xlY = y} 

P{X =x, Y =y} 
= 

P{Y = y} 
p(x,y) 

py(y) 

for all values of y such that py(y) > 0. Similarly, the conditional probability distri
bution function of X given that Y = y is defined, for ally such that py(y) > 0, by 

Fx1Y(xly) = P{X ::; xlY = y} 

= LPX1Y(aly) 
(J$X 

In other words, the definitions are exactly the same as in the unconditional case, 
except that everything is now conditional on the event that Y = y. If Xis indepen
dent of Y, then the conditional mass function and the distribution function are the 
same as the respective unconditional ones. This follows because if Xis independent 
of Y, then 

PXIY(xly) = P{X = xlY = y} 

P{X =x, Y =y} 
= P{Y = y} 

P{X = x}P{Y = y} 

P{Y =y} 

= P{X =x} 

Suppose that p(x,y), the joint probability mass function of X and Y, is given by 

p(O, 0) = .4 p(O, l) = .2 p(l, 0) = .1 p(l, 1) = .3 

Calculate the conditional probability mass function of X given that Y = 1. 

Solution We first note that 

Hence, 

and 

py(l) = LP(X, 1) = p(O, 1) + p(l, 1) = .5 
x 

p(O, 1) 2 
PXIY(Oil) = -- = -

py(l) 5 

p(l, 1) 3 
Px1y(lll) = -- = -

py(l) 5 • 
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If X and Y are independent Poisson random variables with respective parameters 
>..1 and >..2, calculate the conditional distribution of X given that X + Y = n. 

Solution We calculate the conditional probability mass function of X given that X + 
Y = n as follows: 

P{X = klX + y = n} = P{X = k,X + y = n} 
P{X + Y=n} 

P{X = k, Y = n - k} 
= 

P{X + Y=n} 
P{X = k}P{Y = n - k} 

P{X + Y=n} 

where the last equality follows from the assumed independence of X and Y. Recall
ing (Example 3e) that X + Y has a Poisson distribution with parameter >..1 + >..2, 
we see that the preceding equals 

In other words, the conditional distribution of X given that X + Y = n is the bino
mial distribution with parameters n and J..if (J..1 + >..2). • 

We can also talk about joint conditional distributions, as is indicated in the next 
two examples. 

Consider the multinomial distribution with joint probability mass function 

k 

ni::::: 0, L:ni =n 
i=l 

Such a mass function results when n independent trials are performed, with each 
trial resulting in outcome i with probability p;, L:7=1 Pi = 1. The random variables 
X;, i = 1, ... , k, represent, respectively, the number of trials that result in outcome i, 
i = 1, ... , k. Suppose we are given that nj of the trials resulted in outcome j, for 
j = r + 1, ... , k, where L:f=r+l nj = m s n. Then, because each of the other n -
m trials must have resulted in one of the outcomes 1, ... , r, it would seem that the 
conditional distribution of X1, ... ,Xr is the multinomial distribution on n - m trials 
with respective trial outcome probabilities 

P{outcome ii outcome is not any of r + 1, ... , k} = Pi, i = 1,.: .-, r 
Fr 

where Fr = Lt=l Pi is the probability that a trial results in one of the outcomes 
1, ... ,r. 



Example 
4cl 

Jointly Distributed Random Variables 

Solution To verify this intuition, let ni, ... , nr, be such that L:/=1 ni = n - m. Then 

P{X1 = ni, ... ,Xr = nrlXr+l = nr+i. ... Xk = nk} 

P{X1 = ni, ... ,Xk = nk} 

where the probability in the denominator was obtained by regarding outcomes 
1, ... , r as a single outcome having probability Fr, thus showing that the probability 
is a multinomial probability on n trials with outcome probabilities Fr.Pr+l• ... ·Pk· 
Because L:/=1 ni = n - m, the preceding can be written as 

and our intuition is upheld. • 
Consider n independent trials, with each trial being a success with probability p. 
Given a total of k successes, show that all possible orderings of the k successes and 
n - k failures are equally likely. 

Solution We want to show that given a total of k successes, each of the m possible 
orderings of k successes and n - k failures is equally likely. Let X denote the number 
of successes, and consider any ordering of k successes and n - k failures, say, o = 
(s, ... ,s,f, ... ,f). Then 

P( IX = k) = P( o, X = k) 
o P(X= k) 

P(o) 
= P(X= k) 
_ pk(l _ p)n-k 

- (~)pk(l _ p)n-k 

1 
= (~) • 

5 Conditional Distributions: Continuous Case 
If X and Y have a joint probability density function f(x,y), then the conditional 
probability density function of X given that Y = y is defined, for all values of y such 
that fy(y) > 0, by 

f(x,y) 
fx1Y(xly) = fy(y) 

To motivate this definition, multiply the left-hand side by dx.and the right-hand side 
by (dxdy)/dy to obtain 
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f(x,y)dxdy 
fx1y(xly) dx = fy(y) dy 

P{x ::5 X ::5 x + dx,y ::5 Y ::5 y + dy} 
>::::: P{y ::5 Y ::5 y + dy} 

= P{x ::5 X ::5 x + dxly :::; Y ::5 y + dy} 

In other words, for small values of dx and dy.fx1Y(xly)dx represents the conditional 
probability that Xis between x and x + dx given that Y is between y and y + dy. 

The use of conditional densities allows us to define conditional probabilities of 
events associated with one random variable when we are given the value of a second 
random variable. That is, if X and Y are jointly continuous, then, for any set A, 

P{X E AIY = y} = L fx1Y(xly) dx 

In particular, by letting A = ( -oo, a) we can define the conditional cumulative dis
tribution function of X given that Y = y by 

Fx1Y(aly) = P{X ::5 alY = y} = /_~fx1Y(xly) dx 

The reader should note that by using the ideas presented in the preceding discussion, 
we have been able to give workable expressions for conditional probabilities, even 
though the event on which we are conditioning (namely, the event {Y = y}) has 
probability 0. 

If X and Y are independent continuous random variables, the conditional den
sity of X given that Y = y is just the unconditional density of X. This is so because, 
in the independent case, 

fx1Y(xly) = f(x,y) = fx(x)fy(y) = fx(x) 
fy(y) fy(y) 

The joint density of X and Y is given by 

{ 
1{x(2 - x - y) 

f(x,y) = 
0 

0 < x < 1,0 < y < 1 

otherwise 

Compute the conditional density of X given that Y = y, where 0 < y < 1. 

Solution For 0 < x < 1, 0 < y < 1, we have 

f(x,y) 
fx1Y(xly) = fy(y) 

f(x,y) 
=---'---

f~oc,f(x,y) dx 
x(2 - x - y) 

=-:-------
!~ x(2 - x - y) dx 
x(2 - x - y) 

=-----
~ - y/2 

6x(2 - x - y) 
= 

4 - 3y • 
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Suppose that the joint density of X and Y is given by 

{ 
e-xfye-Y 

f(x,y) = 
0 

Y 
0 < x < oo,O < y < oo 

otherwise 

Find P{X > 11Y = y}. 

Solution We first obtain the conditional density of X given that Y = y. 

Hence, 

The t-distribution 

f(x,y) 
fx1Y(xly) = fy(y) 

e-xfye-Y /y = ---..,,..,..-----
e-Y ff:(1/y)e-xfy dx 

= ~e-xfy 
y 

P{X > liY = y} = ('° ~e-xfy dx 
11 y 

= -e-xfyl~ 
= e-1/y • 

If Zand Y are independent, with Z having a standard normal distribution and Y hav
ing a chi-squared distribution with n degrees of freedom, then the random variable 
T defined by 

z z 
T=--=vfn-

v'Yfri n 
is said to have at-distribution with n degrees of freedom. For instance, the t-distribu
tion has important applications in statistical inference. At present, we will content 
ourselves with computing its density function. This will be accomplished by using 
the conditional density of T given Y to obtain the joint density function of T and 
Y, from which we will then obtain the marginal density of T. To begin, note that 
because of the independence of Z and Y, it follows that the conditional distribution 
of T given that Y = y is the distribution of ...fil/y Z, which is normal with mean 0 and 
variance n/y. Hence, the conditional density of T given that Y = y is 

1 -t2 /2 fT1y(tly) = e Y n, -oo < t < oo 
J2rrn/y 

Using the preceding, along with the following formula for the chi-squared density 
given in Example 3b of this chapter, 

e-y/2yn12-1 

fy(y) = 2n12 r(n/2) ' y > 0 
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we obtain that the joint density of T, Y is 

fT y(t,y) = 1 e-t2yf2ne-yf2y(n-l)/2 
' ./2iin2nf2 f'(n/2) 

1 _&!i_ y (n-1)/2 
= .jirn2<n+l)/2 f'(n/2) e ~ Y , Y > 0, -oo < t < oo 

Letting c = ~.and integrating the preceding over ally, gives 

fT(t) = 100 /T,y(t,y) dy 

_ 1 { 00 e-cy (n-1)/2 d 
- .,/im2(n+l)/2 f'(n/2) Jo y y 

= c e-xx(n-l)/2 dx -(n+l)/2 looo 

.jim 2<n+l)/2 f'(n/2) o 
(by letting x = cy) 

n<n+l)/2 r ( ~) 
= ---------~ 

.jim (t2 + n)Cn+l)/2 r ( ! ) ( because ! = ~) 
c t2 + n 

= r(~) (1+~)-(n+l)/2' -oo<t<oo 

.jim r (!) n 
• 

The bivariate normal distribution 

One of the most important joint distributions is the bivariate normal distribution. 
We say that the random variables X, Y have a bivariate normal distribution if, for 
constants J.Lx, J.Ly, ax > 0, ay > 0, -1 < p < 1, their joint density function is given, 
for all -oo < x,y < oo, by 

1 { 1 [(x - J.Lx) 2 
f(x,y) = exp ---~ 

27(axay.,/1 - p2 2(1 - p2) ax 

+ (y - /.Ly)2 - 2p (x - J.Lx)(y - /.Ly)]} 
ay axay 

We now determine the conditional density of X given that Y = y. In doing so, we 
will continually collect all factors that do not depend on x and represent them by the 
constants Ci. The final constant will then be found by using that J:X,fx1y(xly) dx = 1. 
We have 

f(x,y) 
fx1y(xly) = fy(y) 

= Cif(x,y) 

C { 1 [(x - J.Lx) 2 
2 x(y - /.Ly)]} = 2 exp - - p------'-

2(1 - p2) ax axay 
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= c, exp {-ia;c/- P'> [x' -2r (,,, +P :; (y - JLrl)] } 

= C4exp {-2a}(/- p') [x - (IL• + p :: (y - /Ly)) n 
Recognizing the preceding equation as a normal density, we can conclude that given 
Y = y, the random variable X is normally distributed with mean 1-tx + p ~ (y - µ,y) 

y 

and variance o}(l - p2). Also, because the joint density of Y, Xis exactly the same 
as that of X, Y, except that 1-tx. <rx are interchanged with µ,y, <ry, it similarly follows 
that the conditional distribution of Y given X = x is the normal distribution with 
mean 1-ty + p~(x - 1-tx) and variance uf(l - p2). It follows from these results that 
the necessary and sufficient condition for the bivariate normal random variables X 
and Y to be independent is that p = 0 (a result that also follows directly from their 
joint density, because it is only when p = 0 that the joint density factors into two 
terms, one dependinf only on x and the other only on y ). _ 

With C = J , the marginal density of X can be obtained from 
2n<rx<ry l-p2 

fx(x) = j_:f(x,y) dy 

= c 1_: exp {-2(1 ~ p') [ e :,/L' )' + (y :,/Ly)' 

-2p (x - 1-tx)(y - 1-ty)]} dy 
UxUy 

Making the change of variables w = Y:"'' gives 
y 

{ 1 (x - l-tx)2 } fx(x) = Cuy exp - 2(1 _ p2) <rx 

X loo exp {- 1 2 [w2 - 2p x - 1-tx w] } dw 
-oo 2(1 - p ) u x 

{ 1 (x - l-tx) 2 2 } = Cuy exp - 2(1 - p2) <rx (1 - P ) 

X loo exp {-2 1 1 2 [w - P x - 1-tx ]2} dw 
-oo ( - p ) Ux 

Because 

1 100 { 1 [ p ]2} exp - w - -(x - 1-tx) dw = 1 
J21r(1 - p2) -oo 2(1 - p2) Ux . 
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we see that 

fx(x) = Cayj2n(1 - p2) e-<x-µ,x) 2/2a} 

1 -(X-" )2/2a2 = ___ e .-x x 

-./2iiax 

That is, X is normal with mean µx and variance a}. Similarly, Y is normal with 
mean µy and variance a'j. • 

We can also talk about conditional distributions when the random variables are 
neither jointly continuous nor jointly discrete. For example, suppose that X is a con
tinuous random variable having probability density function f and N is a discrete 
random variable, and consider the conditional distribution of X given that N = n. 
Then 

P{x < X < x + dxlN=n} 

dx 
P{N =nix < X < x + dx} P{x < X < x + dx} 

= 
P{N = n} dx 

and letting dx approach 0 gives 

lim P{x < X < x + dxlN = n} = P{N = nlX = x} f(x) 
dx-+O dx P{N = n} 

thus showing that the conditional density of X given that N = n is given by 

P{N=nlX=x} 
fx1N(xln) = P{N = n} f(x) 

Consider n + m trials having a common probability of success. Suppose, however, 
that this success probability is not fixed in advance but is chosen from a uniform 
(0, 1) population. What is the conditional distribution of the success probability 
given that then + m trials result inn successes? 

Solution If we let X denote the probability that a given trial is a success, then X 
is a uniform (0, 1) random variable. Also, given that X = x, then + m trials are 
independent with common probability of success x, so N, the number of successes, 
is a binomial random variable with parameters (n + m,x). Hence, the conditional 
density of X given that N = n is 

f ( I ) _ P{N = nlX = x}fx(x) 
XIN x n - P{N = n} 

( n ~ m) x"(l - x)ffl 

= 
P{N = n} 

= cx"(l - x)ffl 

0 < x < 1 

where c does not depend on x. Thus, the conditional density is that of a peta random 
variable with parameters n + 1,m + 1. 

The preceding result is quite interesting, for it states that if the original or prior 
(to the collection of data) distribution of a trial success probability is uniformly 
distributed over (0, 1) [or, equivalently, is beta with parameters (1, 1)], then the 
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posterior (or conditional) distribution given a total of n successes in n + m trials is 
beta with parameters (1 + n, 1 + m). This is valuable, for it enhances our intuition 
as to what it means to assume that a random variable has a beta distribution. • 

Let Xi,X2, ... ,Xn be n independent and identically distributed continuous random 
variables having a common density f and distribution function F. Define 

X(l) = smallest of Xi. X2, ... , Xn 

Xc2> = second smallest of Xi, X2, ... , Xn 

Xw = jth smallest of X1, X2, ... , Xn 

X(n) = largest of Xi. X2, ... , Xn 

The ordered values Xc1> :s Xc2> :::;; · · · :::;; Xcn> are known as the order statistics corre
sponding to the random variables X1,X2, ... ,Xn. In other words, X(l» ... ,X(n) are 
the ordered values of X1, ... , Xn. 

The joint density function of the order statistics is obtained by noting that the 
order statistics Xo» ... , X(n) will take on the values x1 :s x2 :::;; · · · :::;; Xn if and only 
if, for some permutation (i1,iz, ... ,in) of (1,2, ... ,n), 

Since, for any permutation (i1, ... , in) of (1, 2, ... ,n), 

P { Xi1 - ~ < Xi < Xi1 + ~, ... , Xin 

~ enfx1 , • • • ,Xn(Xi1 , ••• ,Xin) 

= enf(Xi1) · · · f(Xin) 

= enf(x1) · · · f(xn) 

it follows that, for x1 < x2 < · · · < Xn, 

P{x1 - ~ < x(l) < X1 + ~ .... ,Xn 

~ n! enf(x1) · · · f(xn) 

Dividing by en and letting e~O yields 

~ < X(n) < Xn + ~ } 

fx(l) .... .X<nJ (xi,x2, ... ,Xn) = n!f(x1) · · -f(xn) x1 < x2 < · · · < Xn (6.1) 

Equation (6.1) is most simply explained by arguing that, in order for the vector 
(X(l), ... ,Xcn» to equal (xi, ... ,xn>. it is necessary and sufficient for (X1, ... ,Xn) 
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to equal one of then! permutations of {xi, ... ,xn>· Since the probability (density) 
that {X1, ... , Xn) equals any given permutation of {xi, ... ,Xn) is just /(x1) · · · f(xn), 
Equation (6.1) follows. 

Along a road 1 mile long are 3 people "distributed at random." Find the probability 
that no 2 people are less than a distance of d miles apart when d s ~. 

Solution Let us assume that "distributed at random" means that the positions of the 
3 people are independent and uniformly distributed over the road. If Xi denotes the 
position of the ith person, then the desired probability is P{X(I) > X(i-1) + d, i = 
2, 3}. Because 

it follows that 

P{X(i) > X(i-1) 

where we have made the change of variables Y2 = 1 - d - x2. Continuing the string 
of equalities yields 

rl-2d 
= 3 Jo (1 - 2d - x1)2 dx1 

r1-2d 
= 3 Jo yydy1 

= (1 - 2d)3 

Hence, the desired probability that no 2 people are within a distance d of each 
other when 3 people are uniformly and independently distributed over an interval 
of size 1 is (l - 2d)3 when d s ! . In fact, the same method can be used to prove 
that when n people are distributed at random over the unit interval, the desired 
probability is 

[1 - (n - l)d]n 

The proof is left as an exercise. 

1 
whend s -

n - 1 

• 
The density function of the jth-order statistic X(J) can be obtained either by inte

grating the joint density function (6.1) or by direct reasoning as follows: In order for 
X(J) to equal x, it is necessary for j - 1 of then values X1, ... ,Xn to be less than 
x, n - j of them to be greater than x, and 1 of them to equal x. Now, the probability 
density that any given set of j - 1 of the X;'s are less than x, another given set of 
n - j are all greater than x, and the remaining value is equal to x equals 



Example 
6b 

Jointly Distributed Random Variables 

Hence, since there are 

( n ) n! 
j-1,n-j,l -(n-j)!(j-1)! 

different partitions of the n random variables X 1 , ... , Xn into the preceding three 
groups, it follows that the density function of Xw is given by 

When a sample of 2n + 1 random variables (that is, when 2n + 1 independent and 
identically distributed random variables) is observed, the (n + l) smallest is called 
the sample median. If a sample of size 3 from a uniform distribution over (0, 1) is 
observed, find the probability that the sample median is between l and ~. 

Solution From Equation (6.2), the density of X(2) is given by 

3! 
fx(2)(x) = l!l!x(l - x) 0 < x < 1 

Hence, 

11 
16 • 

The cumulative distribution function of Xw can be found by integrating Equa
tion (6.2). That is, 

n' JY . 1 . 
Fxw (y) = (n _ J)!U _ l)! _}F(x)]l- [1 - F(x)r-1f(x) dx (6.3) 

However, Fxw (y) could also have been derived directly by noting that the jth order 
statistic is less than or equal toy if and only if there are j or more of the X/s that are 
less than or equal toy. Thus, because the number of X/s that are less than or equal 
toy is a binomial random variable with parameters n,p = F(y), it follows that 

Fxv> (y) = P{X(J) :::; y} = P{j or more of the Xi's are :::; y} 

~ t ( z) [F(y)J'[t - F(y)]'-k (6.4) 

If, in Equations (6.3) and (6.4), we take F to be the uniform (0, 1) distribution 
[that is,f(x) = 1, 0 < x < 1 ], then we obtain the interesting analytical identity 

~ ( n) /Cl - yt-k = . n!. [Y xj-1(1 - x)n-j dx 0:::; y:::; 1 (6.5) tJ k (n - J)!(j - l)! lo 
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By employing the same type of argument that we used in establishing 
Equation (6.2), we can show that the joint density function of the order statistics 
Xci) and Xv) when i < j is 

for all x; < Xj-

Distribution of the range of a random sample 

Suppose that n independent and identically distributed random variables X1, X2, . .. , 
Xn are observed. The random variable R defined by R = X(n) - X(l) is called the 
range of the observed random variables. If the random variables X; have distribution 
function F and density function f, then the distribution of R can be obtained from 
Equation (6.6) as follows: For a ~ 0, 

P{R s a} = P{X(n) - X(l) s a} 

= ff fx(t).X(n) (Xi,Xn) dx1 dxn 

Xn-Xt:SO 

l oo 1x1+a n! 
= ( _ 2)1 [F(Xn) - F(x1)]n-2/(x1)/(Xn) dxn dx1 

-00 Xt ll • 

Making the change of variable y = F(xn) - F(x1), dy = f (xn) dxn yields 

Thus, 

Equation (6.7) can be evaluated explicitly only in a few special cases. One such case 
is when the X;'s are all uniformly distributed on (0, 1). In this case, we obtain, from 
Equation (6.7), that for 0 < a < 1, 

P{R < a} = n fo1 [F(x1 + a) - F(x1)]n-lf(x1) dx1 

= n rl-a ~-l dx1 + n {l (1 - X1)n-l dx1 
Jo 11-a 

= n(l - a)an-l + an 

Differentiation yields the density function of the range: given in this case by 

fR(a) = { ~(n - l)an-2(1 - a) Osasl 
otherwise 

That is, the range of n independent uniform (0, 1) random variables is a beta random 
variable with parameters n - 1, 2. • 
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7 Joint Probability Distribution of Functions of Random Variables 

Example 
7a 

Let X1 and X2 be jointly continuous random variables with joint probability density 
functionfx1,x2. It is sometimes necessary to obtain the joint distribution of the ran
dom variables Y1 and Y2, which arise as functions of X1 and Xz. Specifically, suppose 
that Y1 = gi (X1, X2) and Y2 = gz (X1, X2) for some functions gi and gz. 

Assume that the functions g1 and gz satisfy the following conditions: 

1. The equations Y1 = gi(x1,x2) andy2 = gz(x1,x2) can be uniquely solved for x1 
and x2 in terms of Y1 and yz, with solutions given by, say, x1 = hi(yi,y2),x2 = 
hz(y1, Yz). 

2. The functions g1 and gz have continuous partial derivatives at all points (x1, x2) 
and are such that the 2 x 2 determinant 

ag1 

ax2 ag1 ag2 ag1 ag2 -::1: 0 
ag2 = ax1 ax2 - ax2 ax1 

at all points (x1,x2). 

Under these two conditions, it can be shown that the random variables Y1 and 
Y2 are jointly continuous with joint density function given by 

where x1 =hi (yi, yz), x2 = hz(yi,yz). 
A proof of Equation (7.1) would proceed along the following lines: 

ff 
(.ii.-i2): 

Kl (.ti..tz) s Yl 
gz (.ii..iz) s Y2 

(7.1) 

(7.2) 

The joint density function can now be obtained by differentiating Equation (7.2) 
with respect to y1 and yz. That the result of this differentiation will be equal to the 
right-hand side of Equation (7.1) is an exercise in advanced calculus. 

Let X1 and X2 be jointly continuous random variables with probability density func
tion fx1,x2. Let Y1 = X1 + X2, Y2 = X1 - Xz. Find the joint density function of Y1 
and Y2 in terms of fx1 .Xz-

Also, since the equations Y1 = x1 + x2 and yz = x1 - x2 have x1 = CY1 + yz) /2, xz = 
(y1 - yz) /2 as their solution, it follows from Equation (7.1) that the desired density is 
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For instance, if X1 and X 2 are independent uniform (0, 1) random variables, then 

0 :::5 Yl + Y2 :::5 2, 0 :::5 Yl - Y2 :::5 2 
otherwise 

or if X1 and X2 are independent exponential random variables with respective param
eters A.1 and A.2, then 

fY1 ,Y2 <Y1, Y2) 

~ { :1;2 exp {-11 el ; Y2) - 12 (Yt ; Y2) I Yl + Y2 ;;:::; 0, Y1 - Y2 ;;:::; 0 

otherwise 

Finally, if X 1 and X2 are independent standard normal random variables, then 

fr1,Y2(y1,y2) = 4~ e-[(y1+yz)2/8+(y1-Y2)2/8] 

1 -(y2+y2)/4 = -e I 2 
4n 

= _1_e-Ytf4_l_e-Yzf4 
v'4Jr v'4Jr 

Thus, not only do we obtain (in agreement with Proposition 3.2) that both X1 + X2 
and X1 - X2 are normal with mean 0 and variance 2, but we also conclude that these 
two random variables are independent. (In fact, it can be shown that if X1 and X2 
are independent random variables having a common distribution function F, then 
X1 + X2 will be independent of X1 - X2 if and only if F is a normal distribution 
function.) • 

Let (X, Y) denote a random point in the plane, and assume that the rectangular 
coordinates X and Y are independent standard normal random variables. We are 
interested in the joint distribution of R, e, the polar coordinate representation of 
(x, y). (See Figure 4.) 

y 

x 

figure 4 • = Random point. (X, Y) = (R, 8). 
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Suppose first that X and Y are both positive. For x and y positive, letting r = 
gi(x,y) = Jx2 + y2 and B = gz(x,y) = tan-1 y/x, we see that 

dg1 x 

ax= Jx2 + y2 

dg1 y 
ay - Jxz + y2 

dgz 1 (-y) -y ax= 1 + (y/x)2 x2 = x2 + y2 

fJgz 1 x 
ay = x[l + (y/x)2] = x2 + y2 

Hence, 
~ I 1 1 

J(x,y) = (x2 + y2)3/2 + (x2 + y2)3/2 = Jx2 + y2 = -;. 

Because the conditional joint density function of X, Y given that they are both 
positive is 

f(x yjX > 0 Y > 0) = f(x,y) = ~e-<x2+Y)/Z : > 0 y > 0 
' ' P(X > 0, Y > 0) rr ' ' 

we see that the conditional joint density function of R = J X2 + Y2 and e = 
tan-1(Y /X), given that X and Y are both positive, is 

2 ,.Z/2 
f(r,BIX > 0, Y > 0) =-re- , 0 < e < rr/2, 0 < r < oo 

rr 

Similarly, we can show that 

2 ,.Z/2 
f(r,BIX < 0, Y > 0) =-re- , rr/2 < () < rr, 0 < r < oo 

rr 
2 ,.Z/2 

f(r,BIX < O,Y < 0) =-re- , rr < B < 3rr/2, 0 < r < oo 
rr 
2 ,.Z/2 

f(r,BIX > O,Y < 0) =-re- , 3rr/2 < B < 2rr, 0 < r < oo 
rr 

As the joint density is an equally weighted average of these four conditional joint 
densities, we obtain that the joint density of R, e is given by 

f(r,B) = 2~ re-r2/Z 0 < e < 2rr, O<r<oo 

Now, this joint density factors into the marginal densities for Rand e, so Rand e 
are independent random variables, with e being uniformly distributed over (0, 2rr) 
and R having the Rayleigh distribution with density 

f(r) = re-r2;z O<r<oo 

(For instance, when one is aiming at a target in the plane, if the horizontal and verti
cal miss distances are independent standard normals, then the absolute value of the 
error has the preceding Rayleigh distribution.) 

This result is quite interesting, for it certainly is not evident a priori that a ran
dom vector whose coordinates are independent standard normal random variables 
will have an angle of orientation that not only is uniformly distributed, but also is 
independent of the vector's distance from the origin. 
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If we wanted the joint distribution of R2 and B, then, since the transformation 
d = gl(x,y) = x2 + y2 and e = g1(x,y) = tan-1 y/x has the Jacobian 

2x 2y 
J = -y x = 2 

x2 + y2 x2 + y2 

it follows that 

f (d, 8) = ~e-d/2 2~ 0 < d < 00, 

Therefore, R2 and B are independent, with R2 having an exponential distribution 
with parameter i· But because R2 = X 2 + ¥ 2, it follows by definition that R2 has 
a chi-squared distribution with 2 degrees of freedom. Hence, we have a verification 
of the result that the exponential distribution with parameter i is the same as the 
chi-squared distribution with 2 degrees of freedom. 

The preceding result can be used to simulate (or generate) normal random vari
ables by making a suitable transformation on uniform random variables. Let U1 and 
U2 be independent random variables, each uniformly distributed over (0, 1). We 
will transform U1, U2 into two independent unit normal random variables X1 and 
X2 by first considering the polar coordinate representation (R, B) of the random 
vector (X1, X2). From the preceding, R2 and B will be independent, and, in addi
tion, R2 = Xf + Xi will have an exponential distribution with parameter A = i· 
But -2log U1 has such a distribution, since, for x > 0, 

P{-2logU1 < x}=P{logU1 > -~} 
= P{U1 > e-x/2} 

= 1 - e-x/2 

Also, because 2;rr U2 is a uniform (0, 2;rr) random variable, we can use it to gener
ate e. That is, if we let 

R2 = -2log U1 

B = 2rrU2 

then R2 can be taken to be the square of the distance from the origin and e can be 
taken to be the angle of orientation of (X1,X2). Now, since X 1 = RcosB,X2 = 
R sin B, it follows that 

X1 = J-2 log U1 cos(2;rr U2) 

X2 = J-2 log U1 sin(2;rr U2) 

are independent standard normal random variables. • 
If X and Y are independent gamma random variables with parameters (a, A) and 
({3, A), respectively, compute the joint density of U = X + Y and V = X /(X + Y). 

Solution The joint density of X and Y is given by 

)..e-A.x(Axr-1 )..e-;..Y()..y).B-l 
fx,y(x,y) = r(a) r({J) 

)..a+.B = -}..(x+y) a-l .B-1 
r(a)r({J)e x y 
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Now, if gi (x,y) = x + y,g2(x,y) = x/(x + y), then 

ag1 = ag1 = 1 ag2 = y ag2 = _ x 
dX dy dX (X + y)2 dy (X + y)2 

so 

J(x,y) = 
1 1 
y -x 

(x + y)2 (x + y)2 
=---

1 

x+y 

Finally, as the equations u = x + y, v = x/(x + y) have as their solutions x = uv, 
y = u(l - v), we see that 

fu,v(u, v) = fx,Y[uv, u(l - v)]u 

A.e-J..u(A.u)a+f!-1 va-1(1 - v)fl-lr(a + fJ) 
= ----------------

r(a + fJ) r(a)r(fJ) 

Hence, X + Y and X / (X + Y) are independent, with X + Y having a gamma dis
tribution with parameters (a + fJ, A.) and X /(X + Y) having a beta distribution with 
parameters (a, fJ). The preceding reasoning also shows that B(a, fJ), the normalizing 
factor in the beta density, is such that ~ 

B(a,fJ) = fo 1 va-1(1 - v)fl-1dv 

r(a)r({J) 

r(a + fJ) 

This entire result is quite interesting. For suppose there are n + m jobs to be per
formed, each (independently) taking an exponential amount of time with rate A. to 
be completed and suppose that we have two workers to perform these jobs. Worker 
I will do jobs 1, 2, ... , n, and worker II will do the remaining m jobs. If we let X and 
Y denote the total working times of workers I and II, respectively, then (either from 
the foregoing result or from Example 3b) X and Y will be independent gamma ran
dom variables having parameters (n, A.) and (m, A.), respectively. It then follows that 
independently of the working time needed to complete all n + m jobs (that is, of 
X + Y), the proportion of this work that will be performed by worker I has a beta 
distribution with parameters (n, m). • 

When the joint density function of then random variables X 1, X2, ... , Xn is given 
and we want to compute the joint density function of Yi, Y2, ... , Yn, where 

the approach is the same-namely, we assume that the functions gi have continuous 
partial derivatives and that the Jacobian determinant 

dg1 dg1 dg1 

dX1 dX2 dXn 

J(xi, ... ,Xn) = dg2 ag2 ag2 
-=F-0 

dX1 dX2 dXn 

dgn dgn dgn 

dX1 dX2 dXn 

at all points (xi, ... ,xn). Furthermore, we suppose that the equations Yl = 
gi(x1,. .. ,Xn),y2 = g2(X1,. . .,Xn),. . .,yn = gn(X1, .. .,xn) have a unique solution, 

283 



284 

Example 
7d 

Example 
Te 

Jointly Distributed Random Variables 

say, x1 = hi (yi, ... , Yn), . .. , Xn = hn (yi, ... , Yn)· Under these assumptions, the joint 
density function of the random variables Yi is given by 

where Xi = hi(yi. . .. , Yn), i = 1, 2, ... , n. 

Let X1, X2, and X3 be independent standard normal random variables. If Y1 = X1 + 
X2 + X3, Y2 = X1 - X2, and Y3 = X1 - X3, compute the joint density function 
of Y1, Y2, Y3. 

Solution Letting Y1 = X1 + X2 + X3, Y2 = X1 - X2, Y3 = X1 - X3, the Jacobian 
of these transformations is given by 

1 1 1 
J = 1 -1 0 = 3 

1 0 -1 

As the preceding transformations yield that 

Xi = Y1 + Y2 + Y3 Xz = Y1 - 2Y2 + Y3 X3 = Y1 + Y2 - 2Y3 
3 3 3 

we see from Equation (7.3) that 

- 2y2 + Y3 Yt + Y2 - 2y3) 
3 ' 3 

Hence, as 

we see that 

where 

Let Xi.X2, ... ,Xn be independent and identically distributed exponential random 
variables with rate A.. Let 

Yi = X1 + · · · + Xi i = 1, ... , n 

(a) Find the joint density function of Y1, ... , Yn. 

(b) Use the result of part (a) to find the density of Yn. 
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Solution (a) The Jacobian of the transformations Y1 = X1, Y2 = X1 + X2, ... , 
Yn = X1 + · · · + Xn is 

l= 

1 
1 
1 

0 
1 
1 

0 
0 
1 

0 
0 
0 

0 
0 
0 

1 1 1 1 . . . 1 

Since only the first term of the determinant will be nonzero, we have J = 1. 
Now, the joint density function of X1, ... , Xn is given by 

n 

fX1, ... ,Xn(X1, ... ,Xn) = n)..e-J...xi 0 <Xi< 00, i= l, ... ,n 
i=l 

Hence, because the preceding transformations yield 

~ 

it follows from Equation (7.3) that the joint density function of Y1, ... , Yn is 
fYi, ... ,Yn(yi,y2,. · · ,yn) 

= fX1, ... ,xn(yi,y2 - Yi.··· ,yi - Yi-1• · · · ,yn - Yn-1) 

~ A"exp {-+1 + f;;fy1 - Y1-1)] I 
=)..ne-J..Yn 0 < yi,0 <Yi - Yi-i.i=2, ... ,n 

= )..ne-J..Yn 0 < Yl < Y2 < · · · < Yn 

(b) To obtain the marginal density of Yn, let us integrate out the other variables 
one at a time. Doing this gives 

fY2, ... ,Yn(y2, ... ,yn) = foY2 )..ne-J..Yndy1 

= )..ny2e-J..Yn 0 < Y2 < Y3 < · · · < Yn 

Continuing, we obtain 

fY3, ... ,Yn (y3, · · · ,yn) = foy
3 A ny2e-J..Yndy2 

-- ,n~e-J..Yn 0 "' < Y3 < Y4 < · · · < Yn 2 

The next integration yields 

0 < Y4 < · ·· < Yn 

Continuing in this fashion gives 

Y.!-1 
fyn(yn) =An n 1 I e-AYn 0 < Yn 

(n - ). 

which, in agreement with the result obtained in Example 3b, shows that X1 + 
· · · + Xn is a gamma random variable with parameters n and A. • 
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*s Exchangeable Random Variables 

Example 
Sa 

The random variables X1, X2, ... , Xn are said to be exchangeable if, for every per
mutation ii, ... , in of the integers 1, ... , n, 

for all x1, ... ,xn. That is, then random variables are exchangeable if their joint dis
tribution is the same no matter in which order the variables are observed. 

Discrete random variables will be exchangeable if 

for all permutations ii, ... , in, and all values x1, ... ,xn. This is equivalent to stating 
that p(x1,x2, ... ,Xn) = P{X1 = x1, ... ,Xn = Xn} is a symmetric function of the 
vector (x1, ... ,Xn), which means that its value does not change when the values of 
the vector are permuted. 

Suppose that balls are withdrawn one at a time and without replacement from an 
urn that initially contains n balls, of which k are considered special, in such a man
ner that each withdrawal is equally likely to be any of the balls that remains in the 
urn at the time. Let Xi = 1 if the ith ball withdrawn is special and let Xi = 0 oth
erwise. We will show that the random variables Xi, ... ,Xn are exchangeable. To 
do so, let (xi, ... ,xn) be a vector consisting of k ones and n - k zeros. However, 
before considering the joint mass function evaluated at (xi, ... ,xn), let us try to gain 
some insight by considering a fixed such vector-for instance, consider the vector 
(1, 1, 0, 1, 0, ... , 0, 1), which is assumed to have k ones and n - k zeros. Then 

kk-1n-kk-2n-k-1 11 
p(l,1,0,1,0, ... ,0,1) = ---1--2--3 4 ... -2-1 

nn - n - n - n -

which follows because the probability that the first ball is special is k/n, the con
ditional probability that the next one is special is (k - 1)/(n - 1), the conditional 
probability that the next one is not special is (n - k) / (n - 2), and so on. By the same 
argument, it follows that p(xi, ... ,xn) can be expressed as the product of n fractions. 
The successive denominator terms of these fractions will go from n down to 1. The 
numerator term at the location where the vector (xi, ... ,xn) is 1 for the ith time is 
k - (i - 1), and where it is 0 for the ith time it is n - k - (i - 1). Hence, since 
the vector (x1, ... ,xn) consists of k ones and n - k zeros, we obtain 

k!(n - k)! 
p(x1, ... ,Xn) = 1 n. 

n 

Xi = 0, 1, I>i = k 
i=l 

Since this is a symmetric function of (xi, ... , Xn), it follows that the random variables 
are exchangeable. • 

Remark Another way to obtain the preceding formula for the joint probability 
mass function is to regard all the n balls as distinguishable from one another. Then, 
since the outcome of the experiment is an ordering of these balls, it follows that 
there are n! equally likely outcomes. Finally, because the number of outcomes having 
special and nonspecial balls in specified places is equal to the number of ways of 
permuting the special and the nonspecial balls among themselves, namely k! (n - k) ! , 
we obtain the preceding mass function. • 
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It is easily seen that if X1,X2, ... ,Xn are exchangeable, then each Xi has the 
same probability distribution. For instance, if X and Y are exchangeable discrete 
random variables, then 

P{X=x}= LP{X=x,Y=y}= LP{X=y,Y=x}=P{Y=x} 
y y 

For example, it follows from Example 8a that the ith ball withdrawn will be special 
with probability k/n, which is intuitively clear, since each of the n balls is equally 
likely to be the ith one selected. 

In Example 8a, let Y1 denote the selection number of the first special ball withdrawn, 
let Y2 denote the additional number of balls that are then withdrawn until the second 
special ball appears, and, in general, let Yi denote the additional number of balls 
withdrawn after the (i - 1) special ball is selected until the ith is selected, i = 1, ... , k. 
For instance, if n = 4,k = 2 and X1=1,Xz = O,X3 = O,X4 = 1, then Y1 = 1, Y2 = 
3. Now, Y1 =ii. Y2 = iz, ... , Yk = ik <=> Xi1 = Xi1+i2 = · · · = Xi1+-·+ik = 1,X; = 0, 
otherwise; thus, from the joint mass function of the Xi, we obtain 

P{y . y . y . kl(n - k)I 
1 = 11, 2 = lz, · · ·, k = lk} = I n. 

Hence, the random variables Y1, ... , Yk are exchangeable. Note that it follows from 
this result that the number of cards one must select from a well-shuffled deck until 
an ace appears has the same distribution as the number of additional cards one must 
select after the first ace appears until the next one does, and so on. • 

The following is known as Polya's urn model: Suppose that an urn initially contains 
n red and m blue balls. At each stage, a ball is randomly chosen, its color is noted, 
and it is then replaced along with another ball of the same color. Let Xi = 1 if the ith 
ball selected is red and let it equal 0 if the ith ball is blue, i ;::?: 1. To obtain a feeling 
for the joint probabilities of these Xi, note the following special cases: 

P{X1=1,Xz = l,X3 = O,X4 = 1,Xs = O} 
n n+l m n+2 m+l = --- ----- ----- ----- -----

n + m n + m + 1n+m+2n+m+3n+m+4 
n(n + l)(n + 2)m(m + 1) 

= ~---------------------~ (n + m)(n + m + l)(n + m + 2)(n + m + 3)(n + m + 4) 

and 

P{X1 = O,X2 = l,X3 = O,X4 = 1,Xs = 1} 
m n m+l n+l n+2 

= n+mn+m+ln+m+2n+m+3n+m+4 
n(n + l)(n + 2)m(m + 1) 

=~---------------------~ (n + m)(n + m + l)(n + m + 2)(n + m + 3)(n + m + 4) 

By the same reasoning, for any sequence xi, ... ,xk that contains r ones and k - r 
zeros, we have 

P{X1 =xi. ...• xk = xkl 
n(n + 1) · · · (n + r - l)m(m + 1) · · · (m + k - r - 1) 

= 
(n + m) · · · (n + m + k - 1) 
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Therefore, for any value of k, the random variables X1, ... , Xk are exchangeable. 
An interesting corollary of the exchangeability in this model is that the proba

bility that the ith ball selected is red is the same as the probability that the first ball 
selected is red, namely, n~m. (For an intuitive argument for this initially nonintuitive 
result, imagine that all the n + m balls initially in the urn are of different types. That 
is, one is a red ball of type 1, one is a red ball of type 2, ... , one is a red ball type of 
n, one is a blue ball of type 1, and so on, down to the blue ball of type m. Suppose 
that when a ball is selected it is replaced along with another of its type. Then, by 
symmetry, the ith ball selected is equally likely to be of any of the n + m distinct 
types. Because n of these n + m types are red, the probability is n~m.) • 

Our final example deals with continuous random variables that are exchangeable. 

LetX1,X2, ... ,Xn be independent uniform (0, 1) random variables, and denote their 
order statistics by X(l}o ... ,X(n)· That is, Xv) is the jth smallest of X1,X2, ... ,Xn. 
Also, let 

Y1 = X(l» 

Yi = X(i) - X(i-l)o i = 2, ... n 

Show that Y1, ... , Yn are exchangeable. 

Solution The transformations 

Yl =Xi, Yi= Xi - Xi-lo i = 2, ... ,n 

yield 

Xi = Y1 + · · · + Yi i = 1, ... , n 

As it is easy to see that the Jacobian of the preceding transformations is equal to 1, 
so, from Equation (7.3), we obtain 

where f is the joint density function of the order statistics. Hence, from Equation ( 6.1) 
we obtain that 

!Yi, ... ,Yn(y1,y2, · · · ,yn) = n! 0 < Yl < Yl + Y2 < · · · < Yl + · · · + Yn < 1 

or, equivalently, 

fYi, ... ,Yn(y1,y2, ... ,yn) = n! 0 < Yi < 1, i = 1, ... ,n, Yl + · · · + Yn < 1 

Because the preceding joint density is a symmetric function of Yl, ... , Yn. we see that 
the random variables Yi. ... , Yn are exchangeable. • 
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Summary 

The joint c~ulative probability distribution function of 
the pair of random variables X and Y is defined by 

F(x,y) = P{X s x, Y s y} -oo < x,y < oo 

In general, the random variables X1, ... , Xn are inde-
pendent if, for all sets of real numbers Ai. ... ,An, 

All probabilities regarding the pair can be obtained from If X and Y are independent continuous random vari
F. To find the individual probability distribution functions ables, then the distribution function of their sum can be 
of X and Y, use obtained from the identity 

Fx(x) = lim F(x,y) Fy(y) = lim F(x,y) 
y~oo x~oo 

If X and Y are both discrete random variables, then 
their joint probability mass function is defined by 

p(i,J) = P{X = i, Y = j} 

The individual mass functions are 

P{X = i} = °L,p(i,j) 
j 

P{Y = j} = °L,p(i,j) 

The random variables X and Y are said to be 
jointly continuous if there is a function f(x, y), called the 
joint probability density function, such that for any two
dimensional set C, 

P{(X,Y)eC}= J/t<x,y)dxdy 

c 

It follows from the preceding formula that 

P{x < X < x + dx,y < Y < y + dy} ~J(x,y)dxdy 

If X and Y are jointly continuous, then they are individu
ally continuous with density functions 

fx(x) = J:f(x,y)dy fy(y) = /_:f(x,y) dx 

The random variables X and Y are independent if, for 
all sets A and B, 

P{X e A, Ye B} = P{X e A}P{Y e B} 

If the joint distribution function (or the joint probability 
mass function in the discrete case, or the joint density func
tion in the continuous case) factors into a part depending 
only on x and a part depending only on y, then X and Y 
are independent. 

Fx+y(a) = J: Fx(a - y)fy(y)dy 

If X;, i = 1, ... , n, are independent normal ran
dom variables with respective parameters J.Li and ul, i = 

n n 
1, ... , n, then E Xi is normal with parameters E J.Li and 

i=l i=l 

If Xi,i = 1, ... ,n, are independell.t Poisson random 
variables with respective parameters Ai, i = 1, ... , n, then 
n n 
E X; is Poisson with parameter E Ai· 
i=l i=l 

If X and Y are discrete random variables, then the 
conditional probability mass function of X given that Y = 
y is defined by 

p(x,y) 
P{X=xlY=y} = -

py(y) 

where p is their joint probability mass function. Also, if X 
and Y are jointly continuous with joint density function f, 
then the conditional probability density function of X given 
that Y = y is given by 

f (x,y) 
fx1y(xly) = fy(y) 

The ordered values X(l) s X<2> s · · · s X<n> of a set of 
independent and identically distributed random variables 
are called the order statistics of that set. If the random vari
ables are continuous and have density function/, then the 
joint density function of the order statistics is 

The random variables X1, ... ,Xn are called exchangeable 
if the joint distribution of Xi1 , ••• , X;n is the same for every 
permutation ii, ... , in of 1, ... , n. 
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Problems 

I. Two fair dice are rolled. Find the joint probability mass 
function of X and Y when 
(a) Xis the largest value obtained on any die and Y is the 
sum of the values; 
(b) Xis the value on the first die and Y is the larger of the 
two values; 
( c) X is the smallest and Y is the largest value obtained on 
the dice. 

2. Suppose that 3 balls are chosen without replacement 
from an um consisting of 5 white and 8 red balls. Let Xi 
equal 1 if the ith ball selected is white, and let it equal 0 
otherwise. Give the joint probability mass function of 

(a) Xi,X2; 
(b) Xi,X2,X3. 

3. In Problem 2, suppose that the white balls are num
bered, and let Yi equal 1 if the ith white ball is selected and 
0 otherwise. Find the joint probability mass function of 

(a) Yi, Y2; 

(b) Yi, Y2, Y3. 

4, Repeat Problem 2 when the ball selected is replaced in 
the um before the next selection. 

S. Repeat Problem 3a when the ball selected is replaced in 
the um before the next selection. 

6. A bin of 5 transistors is known to contain 2 that are 
defective. The transistors are to be tested, one at a time, 
until the defective ones are identified. Denote by Ni the 
number of tests made until the first defective is identified 
and by N2 the number of additional tests until the second 
defective is identified. Find the joint probability mass func
tion of Ni and N2. 

7. Consider a sequence of independent Bernoulli trials, 
each of which is a success with probability p. Let Xi be the 
number of failures preceding the first success, and let X2 
be the number of failures between the first two successes. 
Find the joint mass function of Xi and X2. 

8. The joint probability density function of X and Y is 
given by 

f(x,y) = c(y2 - x2 )e-Y -y s; x s; y, 0 < y < oo 

(a) Find c. 
(b) Find the marginal densities of X and Y. 
(c) Find E[X]. 

9. The joint probability density function of X and Y is 
given by 

f(x,y) = ~ (x2 + x;) 0 < x < 1, 0 < y < 2 

(a) Verify that this is indeed a joint density function. 
(b) Compute the density function of X. 
(c) Find P{X > Y}. 
(d)FindP{Y > ~IX< ~}. 
(e) Find E[X]. 
(f) Find E[Y]. 

Io. The joint probability density function of X and Y is 
given by 

f(x,y) = e-<x+y) Osx <oo,Osy <oo 

Find (a) P{X < Y} and (b) P{X < a}. 

11. A television store owner figures that 45 percent of 
the customers entering his store will purchase an ordinary 
television set, 15 percent will purchase a plasma television 
set, and 40 percent will just be browsing. If 5 customers 
enter his store on a given day, what is the probability that 
he will sell exactly 2 ordinary sets and 1 plasma set on 
that day? 

12. The number of people who enter a drugstore in a given 
hour is a Poisson random variable with parameter ).. = 10. 
Compute the conditional probability that at most 3 men 
entered the drugstore, given that 10 women entered in that 
hour. What assumptions have you made? 

13. A man and a woman agree to meet at a certain location 
about 12:30 P.M. If the man arrives at a time uniformly dis
tributed between 12:15 and 12:45, and if the woman inde
pendently arrives at a time uniformly distributed between 
12:00 and 1 P.M., find the probability that the first to arrive 
waits no longer than 5 minutes. What is the probability that 
the man arrives first? 

14. An ambulance travels back and forth at a constant 
speed along a road of length L. At a certain moment of 
time, an accident occurs at a point uniformly distributed on 
the road. [That is, the distance of the point from one of the 
fixed ends of the road is uniformly distributed over (0, L ). ] 
Assuming that the ambulance's location at the moment of 
the accident is also uniformly distributed, and assuming 
independence of the variables, compute the distribution of 
the distance of the ambulance from the accident. 

IS. The random vector (X, Y) is said to be uniformly dis
tributed over a region R in the plane if, for some constant 
c, its joint density is 

f(x,y) = {~ if(x, y) ER 
otherwise 

(a) Show that l/c =area of region R. 

Suppose that (X, Y) is uniformly distributed over the 
square centered at (0, 0) and with sides of length 2. 
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(b) Show that X and Y are independent, with each being 
distributed uniformly over (-1, 1). 
(c) What is the probability that (X, Y) lies in the cir
cle of radius 1 centered at the origin? That is, find 
P{X2 + Y2 s 1}. 

16. Suppose that n points are independently chosen at ran
dom on the circumference of a circle, and we want the 
probability that they all lie in some semicircle. That is, we 
want the probability that there is a line passing through 
the center of the circle such that all the points are on one 
side of that line, as shown in the following diagram: 

Let P1, ... , P n denote the n points. Let A denote the event 
that all the points are contained in some semicircle, and 
let Ai be the event that all the points lie in the semi
circle beginning at the point Pi and going clockwise for 
180°,i = 1, ... ,n. 
(a) Express A in terms of the Ai. 
(b) Are the Ai mutually exclusive? 
(c) Find P(A). 

17. Three points X1,X2,X3 are selected at random on a 
line L. What is the probability that X2 lies between X1 and 
X3? 

18. Two points are selected randomly on a line of length L 
so as to be on opposite sides of the midpoint of the line. 
[In other words, the two points X and Y are independent 
random variables such that Xis uniformly distributed over 
(0, L/2) and Y is uniformly distributed over (L/2, L ). ] Find 
the probability that the distance between the two points is 
greater than L/3. 

19.Showthatf(x,y)=l/x,O < y < x < l,isajointden
sity function. Assuming that f is the joint density function 
of X, Y, find 

(a) the marginal density of Y; 
(b) the marginal density of X; 
(c) E[X]; 
(d) E[Y]. 

20. The joint density of X and Y is given by 

{
xe-<x+y) 

f(x,y) = 0 
x > O,y > 0 
otherwise 

Are X and Y independent? If, instead, f(x, y) were 
given by 

f(x,y) = g 0 < x < y, 0 < y < 1 
otherwise 

would X and Y be independent? 

21. Let 

f(x,y) = 24xy 0 s x s 1, 0 s y s 1, 0 s x + y s 1 

and let it equal 0 otherwise. 

(a) Show that f (x, y) is a joint probability density function. 
(b) Find E[X]. 
(c) Find E[Y]. 

22. The joint density function of X and Y is 

{ x + y 
f(x,y) = 0 

0 < x < 1, Q < y < 1 
otherwise 

(a) Are X and Y independent? 
(b) Find the density function of X. 
(c) Find P{X + Y < l}. 

23. The random variables X and Y have joint density func
tion 

f(x,y) = l2xy(l - x) 0 < x < 1, 0 < y < 1 

and equal to 0 otherwise. 

(a) Are X and Y independent? 
(b) Find E[X]. 
(c) Find E[Y]. 
(d) Find Var(X). 
(e) Find Var(Y). 

24. Consider independent trials, each of which results in 
k 

outcome i, i = 0, 1, ... , k, with probability Pi. L Pi = 1. 
i=O 

Let N denote the number of trials needed to obtain an 
outcome that is not equal to 0, and let X be that outcome. 

(a)FindP{N=n},n;;:: 1. 
(b) Find P{X = j},j = 1, ... , k. 
(c) Show that P{N = n,X = j} = P{N = n}P{X = j}. 

(d) Is it intuitive to you that N is independent of X? 
(e) Is it intuitive to you that Xis independent of N? 

25. Suppose that 106 people arrive at a service station 
at times that are independent random variables, each of 
which is uniformly distributed over (0, 106). Let N denote 
the number that arrive in the first hour. Find an approxi
mation for P{N = i}. 
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26. Suppose that A, B, C, are independent random vari
ables, each being uniformly distributed over (0, 1 ). 

(a) What is the joint cumulative distribution function of A, 
B,C? 

33. The expected number of typographical errors on a 
page of a certain magazine is .2. What is the probability 
that an article of 10 pages contains (a) 0 and (b) 2 or more 
typographical errors? Explain your reasoning! 

(b) What is the probability that all of the roots of the equa
tion Ax2 + Bx + C = 0 are real? 

34. The monthly worldwide average number of airplane 
crashes of commercial airlines is 2.2. What is the probabil-

27. If X1 and X2 are independent exponential random ity that there will be 
variables with respective parameters A.1 and A.2, find the (a) more than 2 such accidents in the next month? 
distribution of Z = X1/X2. Also compute P{X1 < X2}. (b) more than 4 such accidents in the next 2 months? 

28. The time that it takes to service a car is an exponential 
random variable with rate 1. 

(a) If A. l brings his car in at time 0 and M. l brings her 
car in at time t, what is the probability that M. l's car is 
ready before A. l's car? (Assume that service times are 
independent and service begins upon arrival of the car.) 
(b) If both cars are brought in at time 0, with work start
ing on M. l's car only when A. l's car has been completely 
serviced, what is the probability that M. l's car is ready 
before time 2? 

29. The gross weekly sales at a certain restaurant are a 
normal random variable with mean $2200 and standard 
deviation $230. What is the probability that 

(a) the total gross sales over the next 2 weeks exceeds 
$5000; 
(b) weekly sales exceed $2000 in at least 2 of the next 3 
weeks? 
What independence assumptions have you made? 

30. Jill's bowling scores are approximately normally dis
tributed with mean 170 and standard deviation 20, while 
Jack's scores are approximately normally distributed with 
mean 160 and standard deviation 15. If Jack and Jill 
each bowl one game, then assuming that their scores are 
independent random variables, approximate the probabil
ity that 

(a) Jack's score is higher; 
(b) the total of their scores is above 350. 

31. According to the U.S. National Center for Health 
Statistics, 25.2 percent of males and 23.6 percent of females 
never eat breakfast. Suppose that random samples of 200 
men and 200 women are chosen. Approximate the proba
bility that 

(a) at least 110 of these 400 people never eat breakfast; 
(b) the number of the women who never eat breakfast is 
at least as large as the number of the men who never eat 
breakfast. 

32. Monthly sales are independent normal random vari
ables with mean 100 and standard deviation 5. 

(a) Find the probability that exactly 3 of the next 6 months 
have sales greater than 100. 
(b) Find the probability that the total of the sales in the 
next 4 months is greater than 420. 

( c) more than 5 such accidents in the next 3 months? 

Explain your reasoning! 

JS. In Problem 4, calculate the conditional probability 
mass function of X1 given that 

(a) X2 = 1; 
(b) X2 = 0. 

36. In Problem 3, calculate the conditional probability 
mass function of Y1 given that 

(a) Y2 = 1; 
(b) Y2 = 0. 

37. In Problem 5, calculate the conditional probability 
mass function of Y1 given that 

(a) Y2 = 1; 
(b) Y2 = 0. 

38. Choose a number X at random from the set of num
bers {1, 2, 3, 4, 5}. Now choose a number at random from 
the subset no larger than X, that is, from {1, ... ,X}. Call 
this second number Y. 

(a) Find the joint mass function of X and Y. 
(b) Find the conditional mass function of X given that 
Y = i. Do it for i = 1,2,3,4,5. 
(c) Are X and Y independent? Why? 

39. Two dice are rolled. Let X and Y denote, respectively, 
the largest and smallest values obtained. Compute the con
ditional mass function of Y given X = i, for i = 1, 2, ... , 6. 
Are X and Y independent? Why? 

40. The joint probability mass function of X and Y is 
given by 

1 
p(l, 1) = 8 

1 
p(2, 1) = 8 

1 
p(l,2) = 4 

1 
p(2,2) = -

2 

(a) Compute the conditional mass function' of X given 
y = i,i = 1,2. 
(b) Are X and Y independent? 
(c) Compute P{XY s 3},P{X + Y > 2},P{X/Y > 1}. 
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41. The joint density function of X and Y is given by 

f (x,y) = xe-x(y+l) x > 0, y > 0 

(a) Find the conditional density of X, given Y = y, and that 
of Y, given X = x. 
(b) Find the density function of Z = XY. 

42. The joint density of X and Y is 

f(x,y) = c(x2 - y2)e-x 0 s x < oo, -x s y s x 

Find the conditional distribution of Y, given X = x. 

43. An insurance company supposes that each person has 
an accident parameter and that the yearly number of acci
dents of someone whose accident parameter is A is Pois
son distributed with mean I... They also suppose that the 
parameter value of a newly insured person can be assumed 
to be the value of a gamma random variable with param
eters s and a. If a newly insured person has n accidents 
in her first year, find the conditional density of her acci
dent parameter. Also, determine the expected number of 
accidents that she will have in the following year. 

44, If Xi,X2,X3 are independent random variables that 
are uniformly distributed over (0, 1), compute the prob
ability that the largest of the three is greater than the sum 
of the other two. 

4S. A complex machine is able to operate effectively as 
long as at least 3 of its 5 motors are functioning. If each 
motor independently functions for a random amount of 
time with density function f(x) = xe-x,x > 0, compute 
the density function of the length of time that the machine 
functions. 

SI. Derive the distribution of the range of a sample of 
size 2 from a distribution having density function f(x) = 
2x, 0 < x < 1. 

S2. Let X and Y denote the coordinates of a point uni
formly chosen in the circle of radius 1 centered at the 
origin. That is, their joint density is 

1 
f(x,y) = - x2 + y2 s 1 

Jr 

Find the joint density function of the polar coordinates 
R = (X2 + Y2)112 and e = tan-1 YI X. 

S3. If X and Y are independent random variables both 
uniformly distributed over (0, 1), find the joint density 
function of R = JX2 + Y2, e = tan-1 Y/X. 

S4. If U is uniform on (0,2n) and Z, independent of U, is 
exponential with rate 1, show directly (without using the 
results of Example 7b) that X and Y defined by 

X=mcosu 

Y= msinU 

are independent standard normal random variables. 

SS. X and Y have joint density function 

1 
f(x,y) = 22 x ~ 1, y ~ 1 

xy 

(a) Compute the joint density function of U = XY, V = 
X/Y. 

46. If 3 trucks break down at points randomly distributed 
on a road of length L, find the probability that no 2 of the (b) What are the marginal densities? 
trucks are within a distanced of each other when d s L/2. 

47. Consider a sample of size 5 from a uniform distribution 
over (0, 1). Compute the probability that the median is in 

the interval ( ! ' n. 
48. If X1,X2,X3,X4,X5 are independent and identically 
distributed exponential random variables with the param
eter A, compute 

(a) P{min(Xi, ... ,Xs) s a}; 
(b) P{max(Xi, .. .,Xs) :::::; a}. 

49, Let X(l)•X(2)• ... ,X(n) be the order statistics of a set 
of n independent uniform (0, 1) random variables. Find 
the conditional distribution of X(n) given that Xcl) = 
si,X(2) = s2, ... ,X(n-1) = Sn-1· 

SO. Let Z1 and Z2 be independent standard normal ran
dom variables. Show that X, Y has a bivariate normal dis
tribution when X = Z1, Y = Z1 + Z2. 

S6. If X and Y are independent and identically 
distributed uniform random variables on (0, 1), 
compute the joint density of 

(a) U=X + Y,V=X/Y; 
(b) U =X, V =X/Y; 
(c) U = X + Y, V = X/(X + Y). 

S7. Repeat Problem 56 when X and Y are independent 
exponential random variables, each with parameter A = 1. 

SB. If X1 and X2 are independent exponential random 
variables, each having parameter I.., find the joint density 
function of Y1 = X1 + X2 and Y2 = e-¥1• 

S9. If X, Y, and Z are independent random variables hav
ing identical density functions f (x) = e-x, 0 < x < oo, 
derive the joint distribution of U = X + Y, V = X + 
Z,W=Y + Z. 
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k 
60. In Example 8b, let Yk+l = n + 1 - .L: Yi. Show that 

i=l 
Yi, ... , Yk, Yk+l are exchangeable. Note that Yk+l is the 
number of balls one must observe to obtain a special ball 
if one considers the balls in their reverse order of with
drawal. 

Theoretical Exercises 

I. Verify Equation (1.2). 

2. Suppose that the number of events occurring in a given 
time period is a Poisson random variable with parameter 
A.. If each event is classified as a type i event with prob
ability Pi. i = 1, ... , n, LPi = 1, independently of other 
events, show that the numbers of type i events that occur, 
i = 1, ... ,n, are independent Poisson random variables 
with respective parameters A.pi, i = 1, ... , n. 

3. Suggest a procedure for using Buffon's needle problem 
to estimate n. Surprisingly enough, this was once a com
mon method of evaluating 7r. 

4, Solve Buffon's needle problem when L > D. 

ANSWER: ~~(1 - sinll) + 20/n,wherecosll =D/L. 

5. If X and Y are independent continuous positive random 
variables, express the density function of (a) Z = X /Y and 
(b) Z = XY in terms of the density functions of X and Y. 
Evaluate the density functions in the special case where X 
and Y are both exponential random variables. 

61. Consider an um containing n balls numbered 1, ... ,n, 
and suppose that k of them are randomly withdrawn. Let 
Xi equal 1 if ball number i is removed and let Xi be 0 oth
erwise. Show that Xi, ... , Xn are exchangeable. 

(b) Show that A.w(t), the hazard rate function of W, is 
given by 

A.w(t) = A.x(t) + A.y(t) 

9. Let Xi. ... ,Xn be independent exponential random 
variables having a common parameter A.. Determine the 
distribution of min(X1, ... , Xn). 

Io. The lifetimes of batteries are independent exponential 
random variables, each having parameter A.. A flashlight 
needs 2 batteries to work. If one has a flashlight and a 
stockpile of n batteries, what is the distribution of time that 
the flashlight can operate? 

11. Let Xi. X2, X3, X4, Xs be independent continuous 
random variables having a common distribution function 
F and density function/, and set 

l=P{X1 < X2 < X3 < X4 < Xs} 

(a) Show that I does not depend on F. 
Hint: Write I as a five-dimensional integral and make the 
change of variables Ui = F(xi), i = 1, ... , 5. 
(b) Evaluate I. 

6. If X and Y ~re jointly continuous with joint density 
function fx,y(x,y), show that x + y is continuous with (c) Give an intuitive explanation for your answer to (b). 

density function 12. Show that the jointly continuous (discrete) random 

fx+y(t) = L:fx,Y(x,t - x)dx 

7. (a) If X has a gamma distribution with parameters (t, A.), 
what is the distribution of cX, c > O? 
(b) Show that 

1 2 
2A. X2n 

has a gamma distribution with parameters n, A. when n is a 
positive integer and x?n is a chi-squared random variable 
with 2n degrees of freedom. 

8. Let X and Y be independent continuous random vari
ables with respective hazard rate functions A.x(t) and 
A.y(t), and set W = min(X, Y). 

(a) Determine the distribution function of W in terms of 
those of X and Y. 

variables X1, ... , Xn are independent if and only if their 
joint probability density (mass) function /(xi. ... ,xn) can 
be written as 

n 

f(Xi, ... ,Xn) = ngi(Xi) 
i=l 

for nonnegative functions gi(x), i = 1, ... , n. 

13. In Example Se, we computed the conditional density 
of a success probability for a sequence of trials when the 
first n + m trials resulted inn successes. Would the condi
tional density change if we specified which n of these trials 
resulted in successes? 

14. Suppose that X and Y are independent geometric ran
dom variables with the same parameter p. 

(a) Without any computations, what do you think is the 
value of 

P{X=ilX + Y=n}? 
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Hint: Imagine that you continually flip a coin having prob
ability p of coming up heads. If the second head occurs on 
the nth flip, what is the probability mass function of the 
time of the first head? 
(b) Verify your conjecture in part (a). 

IS. Consider a sequence of independent trials, with each 
trial being a success with probability p. Given that the kth 
success occurs on trial n, show that all possible outcomes 
of the first n - 1 trials that consist of k - 1 successes and 
n - k failures are equally likely. 

16. If X and Y are independent binomial random variables 
with identical parameters n and p, show analytically that 
the conditional distribution of X given that X + Y = m 
is the hypergeometric distribution. Also, give a second 
argument that yields the same result without any compu
tations. 
Hint: Suppose that 2n coins are flipped. Let X denote the 
number of heads in the first n flips and Y the number in 
the second n flips. Argue that given a total of m heads, the 
number of heads in the first n flips has the same distribu
tion as the number of white balls selected when a sample 
of size m is chosen from n white and n black balls. 

17. Suppose that Xi, i = 1, 2, 3 are independent Poisson 
random variables with respective means Ai, i = 1, 2, 3. 
Let X = X1 + X2 and Y = X2 + X3. The random 
vector X, Y is said to have a bivariate Poisson distribu
tion. Find its joint probability mass function. That is, find 
P{X=n, Y=m}. 

18. Suppose X and Y are both integer-valued random vari
ables. Let 

p(ilJ) = P(X = ii Y = J) 

and 

q(jli) = P(Y = j!X = i) 

Show that 

P(x . y ") p(ilJ) 
= l, = 1 = JJillll 

Li q{]fi) 

19. Let Xi.X2,X3 be independent and identically dis
tributed continuous random variables. Compute 

(a) P{X1 > X2IX1 > X3}; 
(b) P{X1 > X2IX1 < X3}; 
(c) P{X1 > X2IX2 > X3}; 
(d) P{X1 > X2IX2 < X3}. 

20. Let U denote a random variable uniformly distributed 
over (0, 1). Compute the conditional distribution of U 
given that 

(a) U >a; 
(b) U <a; 
where 0 < a < 1. 

21. Suppose that W, the amount of moisture in the air on a 
given day, is a gamma random variable with parameters 
(t,fJ). That is, its density is /(w) = fJe-fJw(fJw)1- 1/r(t), 
w > 0. Suppose also that given that W = w, the num
ber of accidents during that day-call it N-has a Poisson 
distribution with mean w. Show that the conditional distri
bution of W given that N = n is the ganima distribution 
with parameters (t + n, fJ + 1). 

22. Let W be a gamma random variable with parame
ters (t,fJ), and suppose that conditional on W = w, 
X1,X2, ... ,Xn are independent exponential random vari
ables with rate w. Show that the conditional distribution 
of W given that X1 = xi.X2 = x2, ... ,Xn = Xn is gamma 

with parameters (t + n, fJ + ~ Xi). 
1=1 

23. A rectangular array of mn numbers arranged inn rows, 
each consisting of m columns, is said to contain a saddle
point if there is a number that is both the minimum of its 
row and the maximum of its column. For instance, in the 
array 

1 3 2 
0 -2 6 
.5 12 3 

the number 1 in the first row, first column is a saddlepoint. 
The existence of a saddlepoint is of significance in the the
ory of games. Consider a rectangular array of numbers as 
described previously in the chapter and suppose that there 
are two individuals-A and B-who are playing the follow
ing game: A is to choose one of the numbers 1, 2, ... , n 
and B one of the numbers 1, 2, ... , m. These choices are 
announced simultaneously, and if A chose i and B chose j, 
then A wins from B the amount specified by the number 
in the ith row, jth column of the array. Now suppose that 
the array contains a saddlepoint-say the number in the 
row rand column k-call this number Xrk· Now if player A 
chooses row r, then that player can guarantee herself a win 
of at least Xrk (since Xrk is the minimum number in the row 
r). On the other hand, if player B chooses column k, then 
he can guarantee that he will lose no more than Xrk (since 
Xrk is the maximum number in the column k). Hence, as A 
has a way of playing that guarantees her a win of Xrk and as 
B has a way of playing that guarantees he will lose no more 
than Xrk. it seems reasonable to take these two strategies 
as being optimal and declare that the value of the game to 
player A is Xrk· 

If the nm numbers in the rectangular array described are 
independently chosen from an arbitrary continuous distri
bution, what is the probability that the resulting array will 
contain a saddlepoint? 

24. If Xis exponential with rate A., find P{[X] = n,X -
[X] s x}, where [x] is defined as the largest integer less 
than or equal to x. Can you conclude that [X] and X - [X] 
are independent? 
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25. Suppose that F(x) is a cumulative distribution func
tion. Show that (a) F"(x) and (b) 1 - [1 - F(x)r are 
also cumulative distribution functions when n is a positive 
integer. 
Hint: Let Xi. ... , Xn be independent random variables 
having the common distribution function F. Define ran
dom variables Y and Z in terms of the Xi so that P{Y :s 
x} = Fn(x) and P{Z :5 x} = 1 - [1 - F(x)]n. 

26. Show that if n people are distributed at random along 
a road L miles long, then the probability that no 2 people 
are less than a distance D miles apart is when D :S L/(n -
l),[1- (n - l)D/L]n.WhatifD > L/(n -1)? 

27. Establish Equation (6.2) by differentiating Equa
tion (6.4). 

28. Show that the median of a sample of size 2n + 1 from 
a uniform distribution on (0, 1) has a beta distribution with 
parameters (n + 1, n + 1). 

29. Verify Equation (6.6), which gives the joint density of 
x(0 and x(J). 

32. Let Xi. ... ,Xn be a set of independent and identically 
distributed continuous random variables having distribu
tion function F, and let X(I), i = 1, ... , n denote their 
ordered values. If X, independent of the Xi, i = 1, ... , n, 
also has distribution F, determine 

(a) P{X > X(n>}; 
(b) P{X > X(l)}; 
(c) P{X(i) < X < X(I)}. 1 :s i < j :s n. 

33. Let X1, ... ,Xn be independent and identically dis
tributed random variables having distribution function F 
and density f. The quantity M = [X(l) + X(n)]/2, defined 
to be the average of the smallest and largest values in 
X1, .. . ,Xn, is called the midrange of the sequence. Show 
that its distribution function is 

34. Let X1, ... , Xn be independent uniform (0, 1) random 
variables. Let R = X(n) - X(l) denote the range and 
M = [X(n) + X(l)]/2 the midrange of Xi. ... , Xn. Compute 
the joint density function of Rand M. 30. Compute the density of the range of a sample of size n 

from a continuous distribution having density function/. 
35. If X and Y are independent standard normal random 

31. Let X(l) :S X(2) :S • · · :S X(n) be the ordered values of variables, determine the joint density function of 
n independent uniform (0, 1) random variables. Prove that 
for 1 :S k :5 n + 1, 

P{X(k) - X(k-1> > t} = (1 - t)n 

where X(o) '"" O,X(n+l) = t. 

Self-Test Problems and Exercises 

I. Each throw of an unfair die lands on each of the odd 
numbers 1, 3, 5 with probability Candon each of the even 
numbers with probability 2C. 

(a) Find C. 
(b) Suppose that the die is tossed. Let X equal 1 if the 
result is an even number, and let it be 0 otherwise. Also, 
let Y equal 1 if the result is a number greater than three 
and let it be 0 otherwise. Find the joint probability mass 
function of X and Y. Suppose now that 12 independent 
tosses of the die are made. 
(c) Fmd the probability that each of the six outcomes 
occurs exactly twice. 
( d) Find the probability that 4 of the outcomes are either 
one or two, 4 are either three or four, and 4 are either five 
or six. 
(e) Find the probability that at least 8 of the tosses land on 
even numbers. 

2. The joint probability mass function of the random vari
ables X, Y, Z is 

1 
p(l, 2, 3) = p(2, 1, 1) = p(2, 2, 1) = p(2, 3, 2) = 4 

x 
U=X V= -y 

Then use your result to show that X /Y has a Cauchy 
distribution. 

Find (a) E[XYZ], and (b) E[XY + XZ + YZ]. 

3. The joint density of X and Y is given by 

f(x,y) = C(y - x)e-Y -y < x < y, 0 < y < oo 

(a) Fmd C. 
(b) Fmd the density function of X. 
(c) Find the density function of Y. 
(d) Find E[X]. 
(e) Find E[Y]. 

4, Let r = r1 + . . . + rk, where all n are positive integers. 
Argue that if Xi, ... ,X, has a multinomial distribution, 
then so does Yi. ... , Yk where, with ro = 0, 

'i-1+ri 

Yi= L Xj, i :5 k . 
j=r;-1 +1 

That is, Y1 is the sum of the first r1 of the X's, Y2 is the 
sum of the next r2, and so on. 
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S. Suppose that X, Y, and Z are independent random 
variables that are each equally likely to be either 1 or 
2. Find the probability mass function of (a) XYZ, (b) 
XY + XZ .+ YZ, and (c) X 2 + YZ. 

6. Let X and Y be continuous random variables with joint 
density function 

f(x,y) ~ {i + cy 

where c is a constant. 

0 < x < 1, 1 < y < 5 

otherwise 

(a) What is the value of c? 
(b) Are X and Y independent? 
(c) Fmd P{X + Y > 3}. 

7. The joint density function of X and Y is 

{xy 
f(x,y) = 0 

0 < x < 1, 0 < y < 2 
otherwise 

(a) Are X and Y independent? 
(b) Fmd the density function of X. 
(c) Find the density function of Y. 
(d) Fmd the joint distribution function. 
(e) Find E[Y]. 
(f) Find P{X + Y < l}. 

a. Consider two components and three types of shocks. A 
type 1 shock causes component 1 to fail, a type 2 shock 
causes component 2 to fail, and a type 3 shock causes 
both components 1 and 2 to fail. The times until shocks 1, 
2, and 3 occur are independent exponential random vari
ables with respective rates .i..i, .i..2, and .i..3. Let Xi denote the 
time at which component i fails, i = 1, 2. The random vari
ables X1, X2 are said to have a joint bivariate exponential 
distribution. Fmd P{X1 > s,X2 > t}. 

9. Consider a directory of classified advertisements that 
consists of m pages, where m is very large. Suppose that 
the number of advertisements per page varies and that 
your only method of finding out how many advertisements 
there are on a specified page is to count them. In addition, 
suppose that there are too many pages for it to be feasible 
to make a complete count of the total number of adver
tisements and that your objective is to choose a directory 
advertisement in such a way that each of them has an equal 
chance of being selected. 

(a) If you randomly choose a page and then randomly 
choose an advertisement from that page, would that satisfy 
your objective? Why or why not? 

Let n(i) denote the number of advertisements on page 
i, i = 1, ... , m, and suppose that whereas these quantities 

are unknown, we can assume that they are all less than 
or equal to some specified value n. Consider the following 
algorithm for choosing an advertisement. 

Step 1. Choose a page at random. Suppose it is page X. 
Determine n(X) by counting the number of adver
tisements on page X. 

Step 2. "Accept" page X with probability n(X)ln. If page 
X is accepted, go to step 3. Otherwise, return to 
step 1. 

Step 3. Randomly choose one of the advertisements on 
pageX. 

Call each pass of the algorithm through step 1 an iter
ation. For instance, if the first randomly chosen page 
is rejected and the second accepted, then we would 
have needed 2 iterations of the algorithm to obtain an 
advertisement. 
(b) What is the probability that a single iteration of the 
algorithm results in the acceptance of an advertisement on 
page i? 
(c) What is the probability that a single iteration of the 
algorithm results in the acceptance of an advertisement? 
( d) What is the probability that the algorithm goes through 
k iterations, accepting the jth advertisement on page i on 
the final iteration? 
(e) What is the probability that the jth advertisement on 
page i is the advertisement obtained from the algorithm? 
(f) What is the expected number of iterations taken by the 
algorithm? 

Io. The "random" parts of the algorithm in Self-Test Prob
lem 8 can be written in terms of the generated values of a 
sequence of independent uniform (0, 1) random variables, 
known as random numbers. With [x] defined as the largest 
integer less than or equal to x, the first step can be written 
as follows: 

Step 1. Generate a uniform (0, 1) random variable U. Let 
X = [mU] + 1, and determine the value of n(X). 

(a) Explain why the above is equivalent to step 1 of Prob
lem 8. 

Hint: What is the probability mass function of X? 
(b) Write the remaining steps of the algorithm in a similar 
style. 

11. Let Xi.X2, ... be a sequence of independent uniform 
(0, 1) random variables. For a fixed constant c, define the 
random variable N by 

N = min{n : Xn > c} 

Is N independent of XN? That is, does knowing the 
value of the first random variable that is greater than c 
affect the probability distribution of when this random 
variable occurs? Give an intuitive explanation for your 
answer. 
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12. The accompanying dartboard is a square whose sides 
are of length 6: 

10 

@ 
The three circles are all centered at the center of the board 
and are of radii 1, 2, and 3, respectively. Darts landing 
within the circle of radius 1 score 30 points, those land
ing outside this circle, but within the circle of radius 2, 
are worth 20 points, and those landing outside the circle 
of radius 2, but within the circle of radius 3, are worth 10 
points. Darts that do not land within the circle of radius 3 
do not score any points. Assuming that each dart that you 
throw will, independently of what occurred on your pre
vious throws, land on a point uniformly distributed in the 
square, find the probabilities of the accompanying events: 

(a) You score 20 on a throw of the dart. 
(b) You score at least 20 on a throw of the dart. 
(c) You score 0 on a throw of the dart. 
(d) The expected value of your score on a throw of 
the dart. 
(e) Both of your first two throws score at least 10. 
(0 Your total score after two throws is 30. 

13. A model proposed for NBA basketball supposes that 
when two teams with roughly the same record play each 
other, the number of points scored in a quarter by the 
home team minus the number scored by the visiting team 
is approximately a normal random variable with mean 1.5 
and variance 6. In addition, the model supposes that the 
point differentials for the four quarters are independent. 
Assume that this model is correct. 

(a) What is the probability that the home team wins? 
(b) What is the conditional probability that the home team 
wins, given that it is behind by 5 points at halftime? 
(c) What is the conditional probability that the home team 
wins, given that it is ahead by 5 points at the end of the first 
quarter? 

14. Let N be a geometric random variable with parame
ter p. Suppose that the conditional distribution of X given 
that N = n is the gamma distribution with parameters n 
and 'A. Find the conditional probability mass function of N 
given that X = x. 

16. You and three other people are to place bids for an 
object, with the high bid winning. If you win, you plan to 
sell the object immediately for $10,000. How much should 
you bid to maximize your expected profit if you believe 
that the bids of the others can be regarded as being inde
pendent and uniformly distributed between $7 ,000 and 
$10,000 thousand dollars? 

17. Find the probability that Xi,X2, ... ,Xn is a permuta
tion of 1,2, .. . ,n, when Xi,Xz, ... ,Xn are independent 
and 

(a) each is equally likely to be any of the values 1, ... , n; 

(b) each has the probability mass function P{Xi = j} = 
Pj,j = 1, ... , n. 

18. Let Xi, ... ,Xn and Yi, ... , Yn be independent random 
vectors, with each vector being a random ordering of k 
ones and n - k zeros. That is, their joint probability mass 
functions are 

P{Xi =ii, . .. ,Xn = in}=P{Yi =ii, .. . , Yn= in} 
1 n =-( )' ij=O,l, 'L)=k 
n j=i 
k 

Let 

i=i 

denote the number of coordinates at which the two vec
tors have different values. Also, let M denote the number 
of values of i for which Xi = 1, Yi = 0. 

(a) Relate N to M . 
(b) What is the distribution of M? 
(c) Find E[N]. 
(d) Find Var(N). 

• 19. Let Z1, Zz, .. . , Zn be independent standard normal 
random variables, and let 

j 

Sj= Lzi 
i=l 

(a) What is the conditional distribution of Sn given that 
sk = y, fork= 1, ... ,n? 
(b) Show that, for 1 :::;; k :::;; n, the conditional distribution 
of Sk given that Sn = xis normal with mean xk/n and 
variance k(n - k)/n. 

20. LetXi,X2, ... be a sequence ofindependent and iden
tically distributed continuous random variables. Find 

(a) P{X6 > XiiX1 = max(Xi, ... ,Xs)} 
(b) P{X6 > X2JXi = max(Xi, ... ,Xs)} 

IS. Let X and Y be independent uniform (0, 1) random 
variables. 21. Prove the identity 

(a) Find the joint density of U = X, V = X + Y. P{X ::=;s, Y:::;; t} =P{X $s} +P{Y $!} + P{X > s, Y > t}-1 

(b) Use the result obtained in part (a) to compute the den- Hint: Derive an expression for P{X > s, y > t} by taking 
sity function of V. the probability of the complementary event. 
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Answers to Selected Problems 

2. (a) 14/39; 10/39; 10/39; 5/39 (b) 84; 70; 70; 70; 23. 1/2; 2/3; 1/20; 1/18 25. e-1 /i! 28. !e-t; 1-3e-2 
40; 40; 40; · 15 all divided by 429 3. 15/26; 5/26; 29 •. 0326 30 •. 3772; .2061 3L .0829; .3766 32. 5/16; 
5/26; 1/26 4. (a) 64/169; 40/169; 40/169; 25/169; 64/169 .0228 33. e-2; 1 - 3e-2 35. 5/13; 8/13 36. 1/6; 516; 
7. p(i,J) = p2(1 - p)i+j 8. c = 1/8; E[X] = 0 1/4; 3/4 4L (y + l)2xe-x(y+l); xe-XY; e-x 42. 1/2 + 
9. (12x2 + 6x)/7; 15/56; .8625; 5/7; 8/7 10. 1/2; 1 - 3y/(4x) - y3 /(4x3) 46. (1 - 2d/ L)3 47 •. 79297 
e-a lL .1458 12. 39.3e-5 13. 1/6; 1/2 15. rr/4 48. 1 - e-5).a; (1 - e-).a)S 52. r/rr: 53. r 56. (a) 
16. n(l/2)n-l 17. 1/3 18. 7/9 19. -log(y), 0 < y < u/(v + 1)2 
1; 1,0 < x < 1; 1/2; 1/4 21. 2/5; 215 22. no; 1/3 

Solutions to Self-Test Problems and Exercises 

1.(a)3C + 6C=l~C=l/9 
(b) Let p(i,j) = P{X = i, Y = j}. Then 

p(l, 1) = 4/9,p(l, 0) = 2/9, P(O, 1) = 1/9,p(O, 0) = 2/9 

(c) <~j! (1/9)6(2/9)6 

(d) (12)! (l/3)12 
(4!)3 

(e) Es ( ~2) (2/3)i(l/3)12-i 

2. (a) Withpj = P{XYZ = j}, we have 

P6 = P2 = P4 = P12 = 1/4 

Hence, 

E[XYZ] = (6 + 2 + 4 + 12)/4 = 6 

(b) With qi = P{XY + XZ + YZ = j}, we have 

qu = qs = qg = q16 = 1/4 

Hence, 

E[XY + XZ + YZ] = (11 + 5 + 8 + 16)/4 = 10 

3. In this solution, we will make use of the identity 

fooo e-x~ dx = n! 

which follows because e-xxn /n!,x > 0, is the density func
tion of a gamma random variable with parameters n + 1 
and ).. and must thus integrate to 1. 

(a) 1 = C f 00 e-Y ly (y - x) dxdy 
lo -y 

= C fo00 e-Y2y2 dy = 4C 

Hence, C = 1/4. 

(b) Since the joint density is nonzero only when y > x and 
y > -x, we have, for x > 0, 

1100 fx(x) = - (y - x)e-Y dy 
4 x 

= - ue-<x+u) du 1 looo ~ 
4 0 

1 -x = -e 
4 

For x < 0, 

(c) fy(y) = ~e-Y f~y(y - x)dx = !y2e-Y 

(d)E[X] = ~ [fo00 
xe-xdx + 1_: (-2x2eX + xeX)dx] 

= ~ [ 1 - fo00 (2y2e-Y + ye-Y) dy J 
1 

= 4[1 - 4 - 1] = -1 

(e) E[Y] = ! f(f° y3e-Y dy = 3 

4. The multinomial random variables Xi, i = 1, ... , r, rep
resent the numbers of each of the types of outcomes 
1, ... , r that occur in n independent trials when each trial 
results in one of the outcomes 1, ... , r with respective 
probabilities Pl, ... • Pr· Now, say that a trial results in a cat
egory 1 outcome if that trial resulted in any of the outcome 
types 1, ... , ri; say that a trial results in a category 2 out
come if that trial resulted in any of the outcome types ri + 
1, ... , ri + r2; and so on. With these definitions, Yi. ... , Yk 
represent the numbers of category 1 outcomes, category 2 
outcomes, up to category k outcomes when n independent 
trials that each result in one of the categories 1, ... , k with 
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• b b"l" • "Ti-1 +ri • 1 k respective pro a 11ties L.j=ri-l +l Pj, 1 = , ... , , are per-
formed. But by definition, such a vector has a multinomial 
distribution. 

S. (a) Lettingpj = P{XYZ = j}, we have 

Pl= 1/8, P2 = 3/8, p4 = 3/8, PB= 1/8 

(b) Lettingpj = P{XY + XZ + YZ = j}, we have 

p3 = 1/8, Ps = 3/8, PB = 3/8, P12 = 1/8 

(c) Lettingpj = P{X2 + YZ = j}, we have 

P2 = 1/8, p3 = 1/4, p5 = 1/4, P6 = 1/4, PB = 1/8 

6. (a) 1 = fo1 
fi\x/5 + cy)dydx 

= fo\4x/5 + 12c) dx 

= 12c + 2/5 

Hence, c = 1/20. 
(b) No, the density does not factor. 

(c) P{X + Y> 3} = f 1 
(

5 (x/5 + y/20)dydx 
lo 13-x 

= fo1 [(2+x)x/5+25/40-(3-x)2 /40] dx 

= l/5+1/15+5/8-19/120 = 11/15 

7. (a) Yes, the joint density function factors. 

(b)fx(x) = xfg ydy = 2x, 0 < x < 1 

(c)fy(y) = y J~ xdx = y/2, 0 < y < 2 
(d) 
P{X < x, Y < y}::;:::: P{X < x}P{Y < y} 

= min(l,x2)min(l,y2/4), x > 0,y > 0 

(e) E[Y] = Jg y2 /2 dy = 4/3 

(t)P{X + Y < 1} = fo1 x fol-x ydydx 

= ~ f 1 x(l - x)2 dx = 1/24 
2 lo 

8. Let T; denote the time at which a shock type i, of i = 
1,2,3, occurs. Fors > O,t > 0, 

P{X1 > s,X2 > t} = P{T1 > s, T2 > t, T3 > max(s, t)} 

= P{T1 > s}P{ T2 > t}P{T3 > max(s, t)} 

= exp{-A.1s} exp{-A.2t} exp{-A.3 max(s, t)} 

= exp{-(A.1s + A.2t + A.3 max(s, t))} 

9. (a) No, advertisements on pages having many ads are 
less likely to be chosen than are ones on pages with 
few ads. 
(b) .1~ m n 

m 

Ln(i) m 

(c) i=~m = n/n, where n = l:n(i)/m 
i=l 

(d) (1 - n/n)k-l .!_ n(i) ~ = (1 - n/n)k-l /(nm) 
m n n(z) 

~ 1 k 1 1 
(e) ~ -(1 - n/n) - = =-· 

k=l nm nm 

(f) The number of iterations is geometric with mean nJn 
IO. (a) P{X = i} = l/m, i = 1, ... ,m. 
(b) Step 2. Generate a uniform (0, 1) random variable U. 
If U < n(X)/n, go to step 3. Otherwise return to step 1. 
Step 3. Generate a uniform (0, 1) random variable U, 
and select the element on page X in position [n(X) U] + 1. 

I I. Yes, they are independent. This can be easily seen by 
considering the equivalent question of whether XN is inde
pendent of N. But this is indeed so, since knowing when 
the first random variable greater than c occurs does not 
affect the probability distribution of its value, which is the 
uniform distribution on (c, 1). 

I 2. Let p; denote the probability of obtaining i points on a 
single throw of the dart. Then 

(a) n /12 
(b) 7r /9 

P30 = n/36 

P20 = 4n /36 - P3o = n /12 

Pio = 9n /36 - P20 - p30 = 5n /36 

Po = 1 - P10 - P20 - P30 = 1 - n /4 

(c) 1 - n/4 
(d) n(30/36 + 20/12 + 50/36) = 35n /9 
(e) (n /4)2 

(t) 2(n /36)(1 - n /4) + 2(n /12)(5n /36) 

I 3. Let Z be a standard normal random variable. 
(a) 

14 1 I tx; _ 6 l 
p tr X; > 0 = p i=l .J24 > ~ 

~ P{Z > -1.2247} ~ .8897 

(b) 

P \P,x, >Oltx, ~ ~s) ~Pix,+ x, ~ s1 

= p {X3 + X4-3 > 2;.Jll} 
v'I2 

~ P{Z > .5774} ~ .2818 
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(c) 

PI ~X1>Dl,¥1 =5} = P{X2+x,+x. > -5! 
= p { X2+X~4-4.5 >-9.5/.JlS} 
~ P{Z > -2.239} ~ .9874 

14. In the following, C does not depend on n. 

P{N = nlX = x} = fx1N(xln)P{N = n}/fx(x) 

= C 1 (A.x)n-1(1 _ p)n-1 
(n - 1)! 

= C(A.(1 - p)x)n-l /(n - l)! 

which shows that, conditional on X = x, N - 1 is a Poisson 
random variable with mean A.(1 - p)x. That is, 

P{N = n!X =x} = P{N-1 = n-l!X =X} 

= e-A(l-p)x(A.(1-p)x)n-l/(n-l)!,n 2: 1. 

15. (a) The Jacobian of the transformation is 

l=I~ ~1=1 
As the equations u = x, v = x + y imply that x = u,y = 
v - u, we obtain 

fu,v(u, v) = fx,y(u, v - u) = 1, 0 < u < 1, 0 < v - u < 1 

or, equivalently, 

fu,v(u, v) = 1, max(v - 1, 0) < u < min(v, 1) 

(b)ForO < v < 1, 

Forlsvs2, 

fv(v) = !av du = v 

fv(v) = 11 du = 2 - v 
v-1 

16. Let U be a uniform random variable on (7, 11 ). If you 
bid x, 7 s x s 10, you will be the high bidder with proba
bility 

U-1 x-1 x-1 ( )
3 3 

(P{U < x})3 = P{-4- < -4-} = (-4-) 

Hence, your expected gain -call it E[ G(x) ]-if you bid x is 

1 
E[ G(x)] = 64 (x - 7)\10 - x) 

Calculus shows this is maximized when x = 37 / 4. 

17. Let ii. i2, .. . , in, be a permutation of 1, 2, ... , n. Then 

P{X1=ii.X2 =i2, ... ,Xn =in} 

= P{X1 = ii}P{X2 = ii}· · · P{Xn = in} 

= Pi1Pi2 · · ·Pin 

=P1P2 · · ·Pn 

Therefore, the desired probability is n! P1P2 · · · Pn• which 
reduces to:! when all pi= l/n. 

n n 
18. (a) Because L xi= L Yi. it follows that N = 2M. 

i=l i=l 
(b) Consider then - k coordinates whose Y-values are 
equal to 0, and call them the red coordinates. Because the 
k coordinates whose X-values are equal to 1 are equally 

likely to be any of the ( ~) sets of k coordinates, it follows 

that the number of red coordinates among these k coordi
nates has the same distribution as the number of red balls 
chosen when one randomly chooses k of a set of n balls 
of which n - k are red. Therefore, M is -a hypergeometric 
random variable. 
(c) E[N] = E[2M] = 2E[M] = 2k<~-k> 
(d) Using the formula for the variance of a hypergeomet
ric, we obtain 

n-k 
Var(N) = 4 Var(M) = 4 n _ 1 k(l - k/n)(k/n) 

n 
19. (a) First note that Sn - Sk = .E Zi is a normal 

i=k+l 
random variable with mean 0 and variance n - k that is 
independent of Sk. Consequently, given that Sk = y, Sn is a 
normal random variable with mean y and variance n - k. 
(b) Because the conditional density function of Sk given 
that Sn = x is a density function whose argument is y, 
anything that does not depend on y can be regarded as a 
constant. (For instance, x is regarded as a fixed constant.) 
In the following, the quantities Ci, i = 1, 2, 3, 4 are all con
stants that do not depend on y: 
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= C3 exp j- n [(y-~x) 2 -(~x)2] J 2k(n - k) n n 

= C4exp {- n (y - ~x) 2 } 
2k(n - k) n 

course, this would not be true if the X; had different distri
butions.) 
(b) One way to solve this problem is to condition on 
whether X6 >Xi. Now, 

But we recognize the preceding as the density function Also, by symmetry, 

of a normal random variable with mean ~x and variance 
k(n - k) 

n 

20. (a) 

P{X6 > Xi IX1 = max(Xi, ... , Xs)} 
P{X6 > Xi, X1 = max(Xi. ... , Xs)} 

= P{Xi = max(Xi. ... , Xs)} 

n 

P{X6 = max(Xi. ... ,X6), Xi= max(Xi, ... ,X5)} 
= 1/5 

1 1 1 
=5--=-

6 5 6 

Thus, the probability that x6 is the largest value is inde
pendent of which is the largest of the other five values. (Of 

From part (a), 

1 
P{X6 > XilXi = max(Xi, ... ,Xs)} = 6 

Thus, conditioning on whether X6 > Xi yields the result 

1 1 5 7 
P{X6 > X2IX1 = max(X1, ... ,Xs)} = '6 + '2 '6 = 12 

21. P {X > s, Y > t} 

=1- P({xss} u {Yst}) 

= 1 - P{X s s} - P{Y st}+ P{X s s,Y st} 
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Introduction 
In this chapter, we develop and exploit additional properties of expected values. The 
expected value of the random variable Xis defined by 

E[X] = L:xp(x) 
x 

where Xis a discrete random variable with probability mass functionp(x), and by 

E[X] = 1_: xf(x) dx 

when Xis a continuous random variable with probability density functionf(x). 
Since E[X] is a weighted average of the possible values of X, it follows that if X 

must lie between a and b, then so must its expected value. That is, if 

P{a :5 X :5 b} = 1 

then 
a=::;; E[X] =::;; b 

To verify the preceding statement, suppose that Xis a discrete random variable for 
which P{a :5 X :5 b} = 1. Since this implies that p(x) = 0 for all x outside of the 
interval [a, b], it follows that 

E[X] = L xp(x) 
x:p(x)>O 

2: L ap(x) 
x:p(x)>O 

=a L p(x) 
x:p(x)>O 

=a 

From Chapter 7 of A First Course in Probability, Ninth Edition. Sheldon Ross. 
Copyright© 2014 by Pearson Education, Inc. All rights reserved. 
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In the same manner, it can be shown that E[X] s b, so the result follows for discrete 
random variables. As the proof in the continuous case is similar, the result follows. 

2 Expectation of Sums of Random Variables 
For a two-dimensional analog of propositions that give the computational formulas 
for the expected value of a function of a random variable, suppose that X and Y are 
random variables and g is a function of two variables. Then we have the following 
result. 

Proposition If X and Y have a joint probability mass function p(x,y ), then 
2.1 

Example 
2a 

E[g(X, Y)] = L _Lg(x,y)p(x,y) 
y x 

If X and Y have a joint probability density function/(x,yJ, then 

E[g(X, Y)] = I:I: g(x,y)f(x,y)dxdy 

Let us give a proof of Proposition 2.1 when the random variables X and Y are 
jointly continuous with joint density function f (x, y) and when g(X, Y) is a nonnega
tive random variable. Because g(X, Y) 2: 0, we have 

E[g(X, Y)] = fo00 P{g(X, Y) > t} dt 

Writing 

P{g(X, Y) > t} = f ( f(x,y)dydx 
lcx,y):g(x,y)>t 

shows that 

E[g(X,Y)]= f 00 J ( f(x,y)dydxdt 
Jo J(x,y):g(x,y)>t 

Interchanging the order of integration gives 

111g(x,y) 

E[g(X, Y)] = f(x,y) dtdydx 
x y t=O 

= 1 i g(x,y)f(x,y)dydx 

Thus, the result is proven when g(X, Y) is a nonnegative random variable. The gen
eral case then follows as in the one-dimensional case. 

An accident occurs at a point X that is uniformly distributed on a road of length L. 
At the time of the accident, an ambulance is at a location Y that is also uniformly 
distributed on the road. Assuming that X and Y are independent, find the expected 
distance between the ambulance and the point of the accident. 

Solution We need to compute E[IX - YI]. Since the joint density function of X and 
Yis 

1 
f(x,y) = L2 , 0 < x < L, 0 < y < L 
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it follows from Proposition 2.1 that 

Now, 

Therefore, 

1 loL!oL E[IX - YI]= 2 Ix - YI dydx 
L o o 

foL Ix - yldy = lox (x - y)dy + iL (y - x)dy 

x2 L2 x2 
= - + - - - - x(L - x) 

2 2 2 
L2 

= - + x2 - xL 
2 

E[IX - YI] = - - + x2 - xL dx 1 foL (L2 ) 
L2 o 2 
L 

=3 • 
For an important application of Proposition 2.1, suppose that E[X] and E[Y] are 

both finite and let g(X, Y) = X + Y. Then, in the continuous case, 

E[X + Y] = L: L: (x + y)f(x,y) dx dy 

= L:L: xf(x,y)dydx + L:L:yf(x,y)dxdy 

= L: xfx(x)dx + L:yfy(y)dy 

= E[X] + E[Y] 

The same result holds in general; thus, whenever E[X] and E[Y] are finite, 

E[X + Y] = E[X] + E[Y] 

Suppose that for random variables X and Y, 

x === y 

(2.1) 

That is, for any outcome of the probability experiment, the value of the random 
variable X is greater than or equal to the value of the random variable Y. Since 
X =::: Y is equivalent to the inequality X - Y =::: 0, it follows that E[X - Y] =::: 0, 
or, equivalently, 

E[X] <== E[Y] • 
Using Equation (2.1), we may show by a simple induction proof that if E[Xi] is 

finite for all i = 1, ... , n, then 

E[X1 + · · · + Xn] = E[X1] + · · · + E[Xn] (2.2) 

Equation (2.2) is an extremely useful formula whose utility will now be illustrated 
by a series of examples. 
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The sample mean 

Let X1, ... ,Xn be independent and identically distributed random variables having 
distribution function F and expected value µ. Such a sequence of random variables 
is said to constitute a sample from the distribution F. The quantity 

- ~Xi 
X=L....,

n 
i=l 

is called the sample mean. Compute E[X]. 

Solution 

E[X] = E [t ~i] 
1=1 

= ~E[txi] 
1=1 

1 n 

= - LE[Xi] 
n i=l 

= µ since E[Xi] = µ 

That is, the expected value of the sample mean is µ, the mean of the distribution. 
When the distribution mean µis unknown, the sample mean is often used in statistics 
to estimate it. • 

Boole's inequality 

Let Ai, ... ,An denote events, and define the indicator variables Xi, i = 1, ... , n, by 

Let 

if Ai occurs 
otherwise 

n 

X=LXi 
i=l 

so X denotes the number of the events Ai that occur. Finally, let 

ifX;;:: 1 
otherwise 

so Y is equal to 1 if at least one of the Ai occurs and is 0 otherwise. Now, it is imme
diate that 

X;;:: y 

so 
E[X];;:: E[Y] 

But since 
n n 

E[X] = LE[Xi] = LP(Ai) 
i=l i=l 
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and 

E(Y] = P{ a ti east one of the A; occur} = P (~A;) 
we obtain Boole's inequality, namely, 

n 

s LP(A) • 
i=l 

The next three examples show how Equation (2.2) can be used to calculate the 
expected value of binomial, negative binomial, and hypergeometric random vari
ables. 

Expectation of a binomial random variable 

Let X be a binomial random variable with parameters n and p. Such a random vari
able represents the number of successes in n independent trials when each trial has 
probability p of being a success, we have that 

where 

X = X1 + X2 + · · · + Xn 

if the ith trial is a success 
if the ith trial is a failure 

Hence, Xi is a Bernoulli random variable having expectation E[Xi] = l(p) + 
0(1 - p ). Thus, 

E[X] = E[X1] + E[X2] + · · · + E[Xn] = np • 

Mean of a negative binomial random variable 

If independent trials having a constant probability p of being successes are per
formed, determine the expected number of trials required to amass a total of r 
successes. 

Solution If X denotes the number of trials needed to amass a total of r successes, 
then X is a negative binomial random variable that can be represented by 

X = X1 + X2 + · · · + X, 

where X1 is the number of trials required to obtain the first success, X2 the number 
of additional trials until the second success is obtained, X3 the number of additional 
trials until the third success is obtained, and so on. That is, Xi represents the number 
of additional trials required after the (i - 1) success until a total of i successes is 
amassed. A little thought reveals that each of the random variables Xi is a geometric 
random variable with parameter p. Hence, E[Xi] = ljp, i = 1, 2, ... , r; thus, 

r 
E[X] = E[Xi] + · · · + E[X,] = -

p • 
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Mean of a hypergeometric random -variable 

If n balls are randomly selected from an urn containing N balls of which m are white, 
find the expected number of white balls selected. 

Solution Let X denote the number of white balls selected, and represent X as 

where 

Now 

Hence, 

X=X1 + ··· + Xm 

if the ith white ball is selected 
otherwise 

E[X;] = P{X; = 1} 

= P{ith white ball is selected} 

n 
=-

N 

mn 
E[X] = E[Xi] + · · · + E[Xm] = -

N 

We could also have obtained the preceding result by using the alternative represen
tation 

X= Y1 + ··· + Yn 

where 

Yi= g if the ith ball selected is white 
otherwise 

Since the ith ball selected is equally likely to be any of the N balls, it follows that 

so 

m 
E[Yi] = -

N 

nm 
E[X] = E[Y1] + · · · + E[Yn] = -

N 

Expected number of matches 

• 

Suppose that N people throw their hats into the center of a room. The hats are mixed 
up, and each person randomly selects one. Find the expected number of people who 
select their own hat. · 

Solution Letting X denote the number of matches, we can compute E[X] most eas
ily by writing 
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if the ith person selects his own hat 
otherwise 

Since, for each i, the ith person is equally likely to select any of the N hats, 

Thus, 

1 
E[Xi] = P{Xi = 1} = -

N 

E[X] = E[X1] + · · · + E[XN] = (~) N = 1 

Hence, on the average, exactly one person selects his own hat. 

Coupon-collecting problems 

• 

Suppose that there are N types of coupons, and each time one obtains a coupon, it 
is equally likely to be any one of the N types. Find the expected number of coupons 
one needs to amass before obtaining a complete set of at least one of each type. 

Solution Let X denote the number of coupons collected before a complete set is 
attained. We compute E[X] by using the same technique we used in computing the 
mean of a negative binomial random variable (Example 2f). That is, we define Xi, i = 
0, 1, ... ,N - 1 to be the number of additional coupons that need be obtained after 
i distinct types have been collected in order to obtain another distinct type, and we 
note that 

X = Xo + X1 + · · · + XN-1 

When i distinct types of coupons have already been collected, a new coupon obtained 
will be of a distinct type with probability (N - i)/N. Therefore, 

- l l N . (. )k-1 
P{Xi = k} = -,:;--- N k ';?. 1 

or, in other words, Xi is a geometric random variable with parameter (N - i)/N. 
Hence, 

implying that 

N 
E[X]=--

1 N - i 

N N N 
E[X] = 1 + -- + -- + ·. · + -

N-1 N-2 1 

= N [1 + · · · + - 1- + ~] N - 1 N • 
Ten hunters are waiting for ducks to fly by. When a flock of ducks flies overhead, the 
hunters fire at the same time, but each chooses his target at random, independently 
of the others. If each hunter independ~ntly hits his target with probability p, com
pute the expected number of ducks that escape unhurt when a flock of size 10 flies 
overhead. 
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Solution Let Xi equal 1 if the ith duck escapes unhurt and 0 otherwise, for i = 1, 
2, ... , 10. The expected number of ducks to escape can be expressed as 

E[X1 + · · · + X10] = E[X1] + · · · + E[X10] 

To compute E[X;] = P{Xi = l}, we note that each of the hunters will, independently, 
hit the ith duck with probability p/10, so 

( p )10 P{X; = l} = 1 - lO 

Hence, 

• 
Expected number of runs 

Suppose that a sequence of n l's and m O's is randomly permuted so that each of the 
(n + m)!/(n!m!) possible arrangements is equally likely. Any consecutive string of 
l's is said to constitute a run of l's-for instance, if n = 6,m = 4, and the ordering 
is 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, then there are 3 runs of l's-and we are interested in 
computing the mean number of such runs. To compute this quantity, let 

Ii= g if a run of l's starts at the ith position 
otherwise 

Therefore, R(l), the number of runs of 1, can be expressed as 

n+m 

R(l) = Lli 
i=l 

and it follows that 
n+m 

E[R(l)] = L E[Ii] 
i=l 

Now, 

E[li] = P{"l" in position l} 
n 

=---
n+m 

and for 1 < i :5 n + m, 

E[I;] = P{"O" in position i - 1, "l" in position i} 
m n 

=--------
n+mn+m-1 

Hence, 
n nm 

E[R(l)] = + (n + m - 1) 1 n + m (n + m)(n + m - )' 

Similarly, E[ R(O)], the expected number of runs of O's, is 

m nm 
E[R(O)] = + --

n +.m n + m 
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and the expected number of runs of either type is 

E[R(l) + R(O)] = 1 + 2nm 
n+m 

A random walk in the plane 

• 

Consider a particle initially located at a given point in the plane, and suppose that it 
undergoes a sequence of steps of fixed length, but in a completely random direction. 
Specifically, suppose that the new position after each step is one unit of distance from 
the previous position and at an angle of orientation from the previous position that 
is uniformly distributed over (0, 2n ). (See Figure 1.) Compute the expected square 
of the distance from the origin after n steps. 

@ =initial position 

CD = position after first step 

@ =position after second step 

Figure I 

Solution Letting (Xi, Yi) denote the change in position at the ith step, i = 1, ... , n, 
in rectangular coordinates, we have 

Xi= cosei 

Yi= sinei 

where ei, i = 1, ... , n, are, by assumption, independent uniform (0, 2n) random vari

ables. Because the position after n steps has rectangular coordinates (ti Xi, iE Y), 

it follows that D 2 , the square of the distance from the origin, is given by 

n 

= I)xf + Yf) + L:L:<xixj + YiYj) 
i=l #j 

= n + L L (cos ei cos 11j + sin ei sin 11j) 
#j 
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where cos2 f)i + sin2 f)i = 1. Taking expectations and using the independence of f)i 
and f)i when i -::F j and the fact that 

{27r 
2:ir E[ cos fJi] = J 0 cos u du = sin 2:ir - sin 0 = 0 

{27r 
2:irE[sinfJi] =Jo sinudu = cosO - cos2:ir = 0 

we arrive at 

• 

Analyzing the quick-sort algorithm 

Suppose that we are presented with a set of n distinct values x1,x2, ... ,Xn and that 
we desire to put them in increasing order, or as it is commonly stated, to sort them. 
An efficient procedure for accomplishing this task is the quick-sort algorithm, which 
is defined as follows: When n = 2, the algorithm compares the two values and then 
puts them in the appropriate order. When n > 2, one of the elements is randomly 
chosen-say it is Xi-and then all of the other values are compared with Xi. Those 
smaller than Xi are put in a bracket to the left of Xi and those larger than Xi are put in 
a bracket to the right of Xi. The algorithm then repeats itself on these brackets and 
continues until all values have been sorted. For instance, suppose that we desire to 
sort the following 10 distinct values: 

5,9,3,10,11,14,8,4,17,6 

We start by choosing one of them at random (that is, each value has probability to of 
being chosen). Suppose, for instance, that the value 10 is chosen. We then compare 
each of the others to this value, putting in a bracket to the left of 10 all those values 
smaller than 10 and to the right all those larger. This gives 

{5,9,3,8,4,6},10,{11,14,17} 

We now focus on a bracketed set that contains more than a single value-say the one 
on the left of the preceding-and randomly choose one of its values-say that 6 is 
chosen. Comparing each of the values in the bracket with 6 and putting the smaller 
ones in a new bracket to the left of 6 and the larger ones in a bracket to the right 
of 6 gives 

{5, 3,4},6, {9, 8}, 10, {11, 14, 17} 

If we now consider the leftmost bracket, and randomly choose the value 4 for com
parison, then the next iteration yields 

{3}, 4, {5}, 6, {9, 8}, 10, {11, 14, 17} 

This continues until there is no bracketed set that contains more than a single value. 
If we let X denote the number of comparisons that it takes the quick-sort algo

rithm to sort n distinct numbers, then E[X] is a measure of the effectiveness of this 
algorithm. To compute E[X], we will first express X as a sum of other random vari
ables as follows. To begin, give the following names to the values that are to be 
sorted: Let 1 stand for the smallest, let 2 stand for the next smallest, and so on. Then, 
for 1 ::;; i < j ::;; n, let I (i,J) equal 1 if i and j are ever directly compared, and let it 
equal 0 otherwise. With this definition, it follows that 
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n-1 n 

X= LL l(i,J) 
i=l j=i+l 

E[X] = E [ E it l(i,J)] 

n-1 n 

= L L E[I(i,J)] 
i=l j=i+l 

n-1 n 

= L L P{i andj are ever compared} 
i=l j=i+l 

To determine the probability that i and j are ever compared, note that the values 
i, i + 1, ... ,j - l,j will initially be in the same bracket (since all values are initially 
in the same bracket) and will remain in the same bracket if the number chosen for 
the first comparison is not between i and j. For instance, if the comparison number is 
larger than j, then all the values i, i + 1, ... ,j - l,j will go in a bracket to the left of 
the comparison number, and if it is smaller than i, then they will all go in a bracket 
to the right. Thus all the values i, i + 1, ... ,j - 1,j will remain in the same bracket 
until the first time that one of them is chosen as a comparison value. At that point all 
the other values between i and j will be compared with this comparison value. Now, 
if this comparison value is neither i nor j, then upon comparison with it, i will go into 
a left bracket and j into a right bracket, and thus i and j will be in different brackets 
and so will never be compared. On the other hand, if the comparison value of the 
set i, i + 1, ... ,j - l,j is either i or j, then there will be a direct comparison between 
i andj. Now, given that the comparison value is one of the values between i and j, 
it follows that it is equally likely to be any of these j - i + 1 values, and thus the 
probability that it is either i or j is 2/U - i + 1). Therefore, we can conclude that 

P{i andj are ever compared}= . ~ 1 1-i+ 

and 

n-1 n 2 
E[X] = L L . - i + 1 

i=l j=i+l J 

To obtain a rough approximation of the magnitude of E[X] when n is large, we can 
approximate the sums by integrals. Now 

n 2 in 2 
·~+1 j - i + 1 Rj i+l x - i + 1 dx 
]=I 

= 2log(x - i + 1)17+1 

= 2log(n - i + 1) - 2log(2) 

Ri 2log(n - i + 1) 

313 



314 

Example 
2n 

Thus 

Properties of Expectation 

n-1 
E[X] ~ °L:21og(n - i + 1) 

~ 2 fin-l log(n - x + l)dx 

= 2 fzn log(y)dy 

=2(ylog(y) - y)l2 

~ 2nlog(n) 

Thus we see that when n is large, the quick-sort algorithm requires, on average, 
approximately 2n log(n) comparisons to sort n distinct values. • 

The probability of a union of events 

Let Ai, ... An denote events, and define the indicator variables Xi, i = 1, ... , n, by 

Now, note that 

Hence, 

if Ai occurs 
otherwise 

n {1 
1 - D (1 - Xi) = 0 

if U Ai occurs 
otherwise 

Expanding the left side of the preceding formula yields 

However, 

so 

P(~A,) =E[ t,x, - L;Fx,x; + ~f,Lx,x;x, 
- · · · + (-l)"+ix, · · ·Xn] 

if Ai1 Ai2 • • • Aik occurs 

otherwise 

E[ Xi1 • • • Xik] = P(Ai1 • • • Aik) 

(2.3) 

Thus, Equation (2.3) is just a statement of the well-known formula for the union of 
events: 

P(UAi) = L P(Ai) - L °L:P<AAj) + LL °L:P(AiAjAk) 
i i<j i<j<k 

- · .. + (-l)n+1P(A1 ···An) • 
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When one is dealing with an infinite collection of random variables Xi,i ~ 1, 
each having a finite expectation, it is not necessarily true that 

(2.4) 

oo n 
To determine when (2.4) is valid, we note that L Xi = lim L Xi. Thus, 

i=l n~ooi=l 

n 

= lim '°' E[ Xi] n~ooL....,, 
i=l 

00 

(2.5) 

Hence, Equation (2.4) is valid whenever we are justified in interchanging the expec
tation and limit operations in Equation (2.5). Although, in general, this interchange 
is not justified, it can be shown to be valid in two important special cases: 

1. The Xi are all nonnegative random variables. (That is, P{Xi ~ O} = 1 for all i.) 
00 

2. L E[IXil] < 00. 
i=l 

Consider any nonnegative, integer-valued random variable X. If, for each i ~ 1, we 
define 

then 

ifX ~ i 
ifX < i 

00 x 00 

L:xi= L:xi + L xi 
i=l 

x 00 

=L:1 + L: o 
i=l i=X+l 

=X 

Hence, since the Xi are all nonnegative, we obtain 

i=l 
00 

= LP{X ~ i} 
i=l 

a useful identity. 

(2.6) 

• 
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Suppose that n elements-call them 1, 2, ... , n-must be stored in a computer in the 
form of an ordered list. Each unit of time, a request will be made for one of these 
elements-i being requested, independently of the past, with probability P(z), i ;::::: 1, 
L P(l) = 1. Assuming that these probabilities are known, what ordering minimizes 
i 

the average position in the line of the element requested? 

Solution Suppose that the elements are numbered so that P(l) ;::::: P(2) ;::::: · · · ;::::: P(n). 
To show that 1, 2, ... , n is the optimal ordering, let X denote the position of the 
requested element. Now, under any ordering-say, 0 = ii. iz, ... , in, 

n 

Po{X;::::: k} = _LP(ij) 
j=k 

n 

;::::: _LP(]) 
j=k 

= P1,2, ... ,n{X;::::: k} 

Summing over k and using Equation (2.6) yields 

Eo[X] ;::::: E1,2, ... ,n[X] 

thus showing that ordering the elements in decreasing order of the probability that 
they are requested minimizes the expected position of the element requested. • 

- *2.1 Obtaining Bounds from Expectations via the Probabilistic 
Method 

The probabilistic method is a technique for analyzing the properties of the elements 
of a set by introducing probabilities on the set and then studying an element chosen 
according to those probabilities. The technique may be used to show that a set con
tains an element that satisfies a certain property. In this subsection, we show how it 
can sometimes be used to bound complicated functions. 

Let f be a function on the elements of a finite set A, and suppose that we are 
interested in 

m = max/(s) 
seA 

A useful lower bound for m can often be obtained by letting S be a random element 
of A for which the expected value off (S) is computable and then noting that m ;::::: 
f (S) implies that 

m;::::: E[f(S)] 

with strict inequality if f (S) is not a constant random variable. That is, E[f (S)] is a 
lower bound on the maximum value. 

The maximum number of Hamiltonian paths in a tournament 

A round-robin tournament of n > 2 contestants is a tournament in which each of 

the ( ~) pairs of contestants play each other exactly once. Suppose that the players 
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are numbered 1,2,3, ... ,n. The permutation ii,h, ... in is said to be a Hamiltonian 
path if ii beats i2, i2 beats i3, .. . , and in-1 beats in. A problem of some interest is to 
determine the largest possible number of Hamiltonian paths. 

As an illustration, suppose that there are 3 players. On the one hand, one of 
them wins twice, then there is a single Hamiltonian path. (For instance, if 1 wins 
twice and 2 beats 3, then the only Hamiltonian path is 1, 2, 3.) On the other hand, if 
each of the players wins once, then there are 3 Hamiltonian paths. (For instance, if 1 
beats 2, 2 beats 3, and 3 beats 1, then 1, 2, 3; 2, 3, 1; and 3, 1, 2, are all Hamiltonians.) 
Hence, when n = 3, there is a maximum of 3 Hamiltonian paths. 

We now show that there is an outcome of the tournament that results in more 
than n!/2n-l Hamiltonian paths. To begin, let the outcome of the tournament specify 

the result of each of the ( ~) games played, and let A denote the set of all 2 (;) pos

sible tournament outcomes. Then, with f (s) defined as the number of Hamiltonian 
paths that result when the outcome is s E A, we are asked to show that 

n! 
max/(s);::::: --

s 2n-l 

To show this, consider the randomly chosen outcome S that is oblained when the 

results of the ( ~) games are independent, with each contestant being equally likely 

to win each encounter. To determine E[f(S)], the expected number of Hamiltonian 
paths that result from the outcome S, number the n! permutations, and, for i = 
1, ... ,n!, let 

Since 

it follows that 

if permutation i is a Hamiltonian 
otherwise 

E[f(S)] = L E[Xi] 
i 

Because, by the assumed independence of the outcomes of the games, the probabil
ity that any specified permutation is a Hamiltonian is (1/2)n-l, it follows that 

E[Xi] = P{Xi = 1} = {1/2)n-l 

Therefore, 
E[f(S)] = n!(1/2)n-l 

Since f (S) is not a constant random variable, the preceding equation implies that 
there is an outcome of the tournament having more than n!/2n-l Hamiltonian 
paths. • 

A grove of 52 trees is arranged in a circular fashion. If 15 chipmunks live in these 
trees, show that there is a group of 7 consecutive trees that together house at least 3 
chipmunks. 

Solution Let the neighborhood of a tree consist of that tree along with the next six 
trees visited by moving in the clockwise direction. We want to show that for any 
choice of living accommodations of the 15 chipmunks, there is a tree that has at least 
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3 chipmunks living in its neighborhood. To show this, choose a tree at random and 
let X denote the number of chipmunks that live in its neighborhood. To determine 
E[X], arbitrarily number the 15 chipmunks and for i = 1, ... , 15, let 

if chipmunk i lives in the neighborhood of the randomly chosen tree 
otherwise 

Because 

we obtain that 
15 

E[X] = LE[Xi] 
i=l 

However, because Xi will equal 1 if the randomly chosen tree is any of the 7 trees 
consisting of the tree in which chipmunk i lives along with its 6 neighboring trees 
when moving in the counterclockwise direction, 

Consequently, 

7 
E[Xi] = P{Xi = 1} = -

52 

E[X] = 105 > 2 
52 

showing that there exists a tree with more than 2 chipmunks living in its neigh
borhood. • 

*2.2 The Maximum-Minimums Identity 

We start with an identity relating the maximum of a set of numbers to the minimums 
of the subsets of these numbers. 

For arbitrary numbers Xi, i = 1, ... ,n, 

m!lXXi = LXi - L:min(xi,Xj) + L min(xi,Xj.Xk) 
I j i<j i<j<k 

+ ... + (-l)n+l min(x1,. . .,Xn) 

Proof We will give a probabilistic proof of the proposition. To begin, assume that all 
the Xi are in the interval [O, 1]. Let Ube a uniform (0, 1) random variable, and define 
the events Ai, i = 1, ... , n, by Ai = { U < xi}. That is, Ai is the event that the uniform 
random variable is less than Xi. Because at least one of these events Ai will occur if 
U is less than at least one of the values Xi, we have that 

UiAi = { U < mrxxi} 

Therefore, 

Also, 
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In addition, because all of the events Ai1 , ••• ,Ai, will occur if U is less than all the 
values Xi1 , ••• , Xi,, we see that the intersection of these events is 

Ai1 ••• Ai,= { U < _min Xi;} 
1=1, ... r 

implying that 

P(Ai1 ••• Ai,) = P { U < .min Xi;} = _min Xi; 
J=l, ... r J=l, ... r 

Thus, the proposition follows from the inclusion-exclusion formula for the probabil
ity of the union of events: 

P(UiAi) = L P(Ai) - L P(AiAj) + L P(AiAjAk) 
i i<j i<j<k 

+ ... + c-1r+1P(A1 .. . An) 

When the Xi are nonnegative, but not restricted to the unit interval, let c be such 
that all the x; are less than c. Then the identity holds for the values Yi = xif c, and the 
desired result follows by multiplying through by c. When the Xi can be negative, let 
b be such that Xi + b > 0 for all i. Therefore, by the preceding, 

m~x(x; + b) = L(Xi + b) - L min(x; + b,xi + b) 
I . . . 

I l<J 

+ .. · + (-1r+i min(x1 + b, ... ,xn + b) 

Letting 

M = L:xi - L:min(xi,Xj) + .. · + (-1r+i min(xi. ... ,xn) 
i i<j 

we can rewrite the foregoing identity as 

mFx' + b ~ M + b (• - (;) + ... + (-!}"+' (:)) 

But 

The preceding two equations show that 

and the proposition is proven. 

maxx;=M 
i 

It follows from Proposition 2.2 that for any random variables Xi. ... ,Xn, 

0 
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Taking expectations of both sides of this equality yields the following relationship 
between the expected value of the maximum and those of the partial minimums: 

E [ mtxxi] = ~E[Xi] - ~E[min(Xi,Xj)] 
l l<J 

+ (2.7) 

Coupon collecting with unequal probabilities 

Suppose there are n types of coupons and that each time one collects a coupon, it 
is, independently of previous coupons collected, a type i coupon with probability Pi, 

n 
L Pi = 1. Find the expected number of coupons one needs to collect to obtain a 
i=l 
complete set of at least one of each type. 

Solution If we let Xi denote the number of coupons one needs to collect to obtain 
a type i, then we can express X as 

x = max xi 
i=l, ... ,n 

Because each new coupon obtained is a type i with probability Pi, Xi is a geometric 
random variable with parameter Pi· Also, because the minimum of Xi and Xj is the 
number of coupons needed to obtain either a type i or a type j, it follows that for 
i "# j, min (Xi,Xj) is a geometric random variable with parameter Pi + Pj· Similarly, 
min (Xi, Xj. Xk), the number needed to obtain any of types i, j, and k, is a geometric 
random variable with parameter Pi + Pj +Pk> and so on. Therefore, the identity (2.7) 
yields 

1 
E[X] = L _!:_ - L 1 + L 

. Pi .. Pi + Pj .. kPi + Pj +Pk 
l tq tq< 

1 + ... + (-l)n+l ____ _ 
Pl + + Pn 

Noting that 

and using the identity 

n 

i - n <1 - e-p;x) = I: e-p;x 

i=l 

rXJ i Jo e-px dx = p 

Le-(p;+pj)X + ... + (-l)n+le-<Pt+···+Pn)x 

i<j 

shows, upon integrating the identity, that 

is a more useful computational form. • 
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3 Moments of the Number of Events that Occur 
Many of the examples solved in the previous section were of the following form: For 
given events A 1, ... , An, find E[X], where Xis the number of these events that occur. 
The solution then involved defining an indicator variable Ii for event Ai such that 

Because 

we obtained the result 

ifAi occurs 
otherwise 

(3.1) 

Now suppose we are interested in the number of pairs of 'events that occur. 
Because Iilj will equal 1 if both Ai and Aj occur and will equal 0 otherwise, it fol
lows that the number of pairs is equal to Li<jlilj. But because Xis the number of 
events that occur, it also follows that the number of pairs of events that occur is (f). 
Consequently, 

where there are m terms in the summation. Taking expectations yields 

or 

giving that 

E[X(X - l)] = LP(AiAj) 
2 .. 

Z<J 

E[X2] - E[X] = 2 LP(AiAj) 
i<j 

which yields E[X2], and thus Var(X) = E[X2] - (E[X])2. 

(3.2) 

(3.3) 

Moreover, by considering the number of distinct subsets of k events that all 
occur, we see that 

Taking expectations gives the identity 
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Moments of binomial random variables 

Consider n independent trials, with each trial being a success with probability p. Let 
Ai be the event that trial i is a success. When i "# j, P(AiAj) = p2• Consequently, 
Equation (3.2) yields 

or 

E[X(X - 1)] = n(n - l)p2 

or 

E[X2] - E[X] = n(n - l)p2 

Now, E[X] = Lt=l P(Ai) = np, so, from the preceding equation 

Var(X) = E[X2] - (E[X])2 = n(n - l)p2 + np - (np)2 = np(l - p) 

In general, because P(Ai1Ai2 • • ·Aik) =pk, we obtain from Equation (3.4) that 

or, equivalently, 

E[X(X - 1) .. · (X - k + 1)] = n(n - 1) .. · (n - k + l)pk 

The successive values E[Xk], k ;;:::; 3, can be recursively obtained from this identity. 
For instance, with k = 3, it yields 

or 

or 

E[X(X - l)(X - 2)] = n(n - l)(n - 2)p3 

E[X3 - 3X2 + 2X] = n(n - l)(n - 2)p3 

E[X3] = 3E[X2] - 2E[X] + n(n - l)(n - 2)p3 

= 3n(n - l)p2 + np + n(n - l)(n - 2)p3 

Moments of hypergeometric random variables 

• 

Suppose n balls are randomly selected from an urn containing N balls, of which m 
are white. Let Ai be the event that the ith ball selected is white. Then X, the number 
of white balls selected, is equal to the number of the events Ai,. .. ,An that occur. 
Because the ith ball selected is equally likely to be any of the N balls, of which m are 
white, P(Ai) = m/N. Consequently, Equation (3.1) gives that E[X] = Lt=l P(Ai) = 
nm/N. Also, since · 

mm -1 
P(AiAj) = P(Ai)P(AjlAi) = N N _ l 
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we obtain, from Equation (3.2), that 

or 

E [(X\]- "m(m - 1) _ (n) m(m - 1) 
2} - f;; N(N - 1) - 2 N(N - 1) 

m(m - 1) 
E[X(X - 1)] = n(n - 1) N(N _ l) 

showing that 

E[X2] = n(n - 1) ~~~ = ~~ + E[X] 

This formula yields the variance of the hypergeometric, namely, 

Var(X) = E[X2] - (E[X])2 

m(m - 1) nm n2m2 

= n(n - l) N(N - 1) + N N2 

= mn [<n - l)(m - 1) + 1 _ mn] 
N N - 1 N 

Higher moments of X are obtained by using Equation (3.4). Because 

m(m - 1) .. · (m - k + 1) 
P(Ai1Aii .. ·Aik) = N(N - 1) ... (N - k + 1) 

Equation (3.4) yields 

E [(X)] = (n) m(m - 1) .. · (m - k + 1) 
k k N(N - 1) .. · (N - k + 1) 

or 

E[X(X - 1) · · · (X - k + 1)] 
m(m - 1)- .. (m - k + 1) 

= n(n - 1) ... (n - k + 1) N(N - 1) ... (N - k + 1) • 

Moments in the match problem 

For i = 1, ... , N, let Ai be the event that person i selects his or her own hat in the 
match problem. Then 

1 1 
P(AiAj) = P(Ai)P(AjlAi) = N N _ l 

which follows because, conditional on person i selecting her own hat, the hat selected 
by person j is equally likely to be any of the other N - 1 hats, of which one is his 
own. Consequently, with X equal to the number of people who select their own hat, 
it follows from Equation (3.2) that 

thus showing that 
E[X(X - 1)] = 1 
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Therefore, E[X2] :::w: 1 + E[X]. Because E[X] = 'Lf:1 P(Ai) = 1, we obtain that 

Var(X) = E[X2] - (E[X])2 = 1. 

Hence, both the mean and variance of the number of matches is 1. For higher 
moments, we use Equation (3.4), along with the fact that P(Ai1Ai2 • • ·Aik) = 

1 b . 
N(N-l)···(N-k+i), too tam 

E [ (!)] = (J N(N - 1) · · .\N - k + 1) 

or 
E[X(X - 1)· .. (X - k + 1)] = 1 • 

Another coupon-collecting problem 

Suppose that there are N distinct types of coupons and that, independently of past 
types collected, each new one obtained is type j with probability Pb 'Lf:,1 Pi = 1. 
Find the expected value and variance of the number of different types of coupons 
that appear among the first n collected. 

Solution We will find it more convenient to work with the number of uncollected 
types. So, let Y equal the number of types of coupons collected, and let X = N - Y 
denote the number of uncollected types. With Ai defined as the event that there are 
no type i coupons in the collection,X is equal to the number of the events Ai, ... ,AN 
that occur. Because the types of the successive coupons collected are independent, 
and, with probability 1 - Pi each new coupon is not type i, we have 

P(Ai) = (1 - Pir 

Hence, E[X] = 'Lf:1 (1 - Pi)n, from which it follows that 

N 

E[Y] = N - E[X] = N - ~)1 - Pi)n 
i=l 

Similarly, because each of the n coupons collected is neither a type i nor a type j 
coupon, with probability 1 - Pi - Pi• we have 

Thus, 

or 

P(AiAi) = (1 - Pi - Pi)n, i '# j 

E[X2] = 2 :L:o - Pi - Pir + E[X] 
i<i 

Hence, we obtain 

Var(Y) = Var(X) 

= E[X2] - (E[X])2 

N 

= 2 LO - Pi - Pi)n + :L:<l - Pi)n -
i<j i=1 
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In the special case where Pi= 1/N, i = 1, ... , N, the preceding formulas give 

and 

The negative hypergeometric random variables 

Suppose an urn contains n + m balls, of which n are special and m are ordinary. These 
items are removed one at a time, with each new removal being equally likely to be 
any of the balls that remain in the urn. The random variable Y, equal to the number 
of balls that need be withdrawn until a total of r special balls have been removed, 
is said to have a negative hypergeometric distribution. The negative hypergeometric 
distribution bears the same relationship to the hypergeometric distribution as the 
negative binomial does to the binomial. That is, in both cases, rather than considering 
a random variable equal to the number of successes in a fixed number of trials (as 
are the binomial and hypergeometric variables), they refer to the number of trials 
needed to obtain a fixed number of successes. 

To obtain the probability mass function of a negative hypergeometric random 
variable Y, note that Y will equal k if both 

1. the first k - 1 withdrawals consist of r - 1 special and k - r ordinary balls 
and 

2. the kth ball withdrawn is special. 

Consequently, 

P{Y = k} = (,~1)(k~r) n - r + 1 
(~~'f) n + m - k + 1 

We·wm not, however, utilize the preceding probability mass function to obtain the 
mean and variance of Y. Rather, let us number the m ordinary balls as 01, • •. , Om, 

and then, for each i = 1, ... , n, let Ai be the event that Oi is withdrawn before r 
special balls have been removed. Then, if X is the number of the events A 1, ... , Am 
that occur, it follows that Xis the number of ordinary balls that are withdrawn before 
a total of r special balls have been removed. Consequently, 

Y=r + X 

showing that 
m 

E[Y] = r + E[X) = r + LP(Ai) 
i=1 

To determine P(Ai), consider then + 1 balls consisting of Oi along with then special 
balls. Of these n + 1 balls, Oi is equally likely to be the first one withdrawn, or the 
second one withdrawn, ... , or the final one withdrawn. Hence, the probability that 
it is among the first r of these to be selected (and so is removed before a total or r 
special balls have been withdrawn) is n:h· Consequently, 

r 
P(A-)=--

1 n + 1 
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and 
E[Y] = r + m-r- = r(n + m + 1) 

n+l n+l 

Thus, for instance, the expected number of cards of a well-shuffled deck that would 
need to be turned over until a spade appears is 1 + ~~ = 3.786, and the expected 
number of cards that would need to be turned over until an ace appears is 
1 + 4f = 10.6. 

To determine Var(Y) = Var(X), we use the identity 

E[X(X - 1)] = 2 LP(AiAj) 
i<j 

Now, P(AiAj) is the probability that both Oi and Oj are removed before there have 
been a total of r special balls removed. So consider then + 2 balls consisting of Oi, Oj. 

and the n special balls. Because all withdrawal orderings of these balls are equally 
likely, the probability that Oi and Oj are both among the first r + 1 of them to be 
removed (and so are both removed before r special balls have been withdrawn) is 

Consequently, 

so 

PAA· _ @(,.~1) _ r(r + 1) 
( ' 1) - (n+2) - (n + l)(n + 2) 

r+l 

E[X(X - 1)] = 2(m) r(r + l) 
2 (n + l)(n + 2) 

2 r(r + 1) 
E[X ] = m(m - 1) (n + l)(n + 2) + E[X] 

Because E[X] = mn:IT, this yields 

r(r + 1) r 
Var(Y) = Var(X) = m(m - 1) (n + l)(n + 2) + m n + 1 

A little algebra now shows that 

V: ( ) mr(n + 1 - r)(n +. m + 1) 
ar Y = -----.....-----

(n + 1)2(n + 2) 

Singletons in the coupon collector's problem 

_ (m-r )2 
n + 1 

• 

Suppose that there are n distinct types of coupons and that, independently of past 
types collected, each new one obtained is equally likely to be any of the n types. 
Suppose also that one continues to collect coupons until a complete set of at least 
one of each type has been obtained. Find the expected value and variance of the 
number of types for which exactly one coupon of that type is collected. 

Solution Let X equal the number of types for which exactly one of that type is 
collected. Also, let Ti denote the ith type of coupon to be collected, and let Ai be 
the event that there is only a single type Ti coupon in the complete set. Because X 
is equal to the number of the events Ai, ... ,An that occur, we have 

n 

E[X] = LP(Ai) 
i=l 

Now, at the moment when the first type Ti coupon is collected, there remain n - i 
types that need to be collected to have a complete set. Because, starting at this 
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moment, each of these n - i + 1 types (then - i not yet collected and type Ti) 
is equally likely to be the last of these types to be collected, it follows that the type 
Ti will be the last of these types (and so will be a singleton) with probability nJ+i · 
Consequently, P(Ai) = nJ+l, yielding 

n 1 n 1 
E[X]= L . =I:-: 

n-z+l z 
i=l i=l 

To determine the variance of the number of singletons, let Si,j, for i < j, be the event 
that the first type Ti coupon to be collected is still the only one of its type to have 
been collected at the moment that the first type Tj coupon has been collected. Then 

Now, P(Si,j) is the probability that when a type Ti has just been collected, of the 
n - i + 1 types consisting of type Ti and the n - i as yet uncollected types, a type Ti 
is not among the first j - i of these types to be collected. Because type Ti is equally 
likely to be the first, or second, or ... , n - i + 1 of these types to be collected, 
we have 

j-i n+l-j 
P(Si,j) = 1 - n - i + 1 n + 1 - i 

Now, conditional on the event Si,j, both Ai and Aj will occur if, at the time the first 
type Tj coupon is collected, of then - j + 2 types consisting of types Ti, Tj, and the 
n - j as yet uncollected types, Ti and Tj are both collected after the other n - j. But 
this implies that 

Therefore, 

2 
P(AiAj) = (n + 1 - i)(n + 2 - J)' i < j 

yielding 

E[X(X - 1)] = 4 '°' l 
~ (n + 1 - i)(n + 2 - ;) 
I<] 

Consequently, using the previous result for E[X], we obtain 

1 n 1 
Var(X) = 4 L + L -: 

i<j (n + 1 - i)(n + 2 - j) i=l z 
-(t })2 

!=l 
• 

4 Covariance, Variance of Sums, and Correlations 
The following proposition shows that the expectation of a product of independent 
random variables is equal to the product of their expectations. 

Proposition If X and Y are independent, then, for any functions hand g, 
4.1 

E[g(X)h(Y)] = E[g(X)]E[h(Y)] 
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Proof Suppose that X and Y are jointly continuous with joint density f(x,y). Then 

E[g(X)h(Y)] = 1_:1_: g(x)h(y)f(x,y)dxdy 

= 1_: 1_: g(x)h(y)fx(x)fy(y) dx dy 

= 1_: h(y)fy(y)dy 1_: g(x)fx(x) dx 

= E[h(Y)]E[g(X)] 

The proof in the discrete case is similar. D 

Just as the expected value and the variance of a single random variable give 
us information about that random variable, so does the covariance between two 
random variables give us information about the relationship between the random 
variables. 

Definition 
The covariance between X and Y, denoted by Cov (X, Y), is defined by 

Cov(X, Y) = E[(X - E[X])(Y - E[Y])] 

Upon expanding the right side of the preceding definition, we see that 

Cov(X, Y) = E[XY - E[X]Y - XE[Y] + E[Y]E[X]] 

= E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y] 

= E[XY] - E[X]E[Y] 

Note that if X and Y are independent, then, by Proposition 4.1, Cov(X, Y) = 0. 
However, the converse is not true. A simple example of two dependent random 
variables X and Y having zero covariance is obtained by letting X be a random 
variable such that 

and defining 

1 
P{X = 0} = P{X = 1} = P{X = -1} = -

3 

Y= {~ ifX-:t-0 
ifX=O 

Now, XY = 0, so E[XY] = 0. Also, E[X] = 0. Thus, 

Cov(X, Y) = E[XY] - E[X]E[Y] = 0 

However, X and Y are clearly not independent. 
The following proposition lists some of the properties of covariance. 

(i) Cov(X, Y) = Cov(Y,X) 
(ii) Cov(X,X) = Var(X) 

(iii) Cov(aX, Y) =a Cov(X, Y) 
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Proof of Proposition 4.2 Parts (i) and (ii) follow immediately from the definition 
of covariance, and part (iii) is left as an exercise for the reader. To prove part (iv), 
which states that the covariance operation is additive (as is the operation of taking 
expectations), let /,Li = E[Xi] and Vj = E[Yj]. Then 

and 

= E [ ~(X; - µ;) t,(Y; -v;)] 

= E [ ~E(X; -µ;)(Y; - v;)] 
n m 

= LLE[(Xi - /,li)(Yj - Vj)] 
i=l j=l 

where the last equality follows because the expected value of a sum of random vari
ables is equal to the sum of the expected values. D 

It follows from parts (ii) and (iv) of Proposition 4.2, upon taking Yj = Xj,j = 
1, ... ,n, that 

n n 

= LLCov(Xi,Xj) 
i=l j=l 

n 

= LVar(Xi) +LL Cov(Xi,Xj) 
i=l i'#j 

Since each pair of indices i,j, i =F j, appears twice in the double summation, the pre
ceding formula is equivalent to 

(4.1) 
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If Xi, ... ,Xn are pairwise independent, in that Xi and Xj are independent for 
i ~ j, then Equation (4.1) reduces to 

The following examples illustrate the use of Equation (4.1). 

Let X1, ... ,Xn be independent and identically distributed random variables having 
n 

expected value µ, and variance a 2 , and as in Example 2c, let X = L Xif n be the 
i=l 

sample mean. The quantities Xi - X, i = 1, ... , n, are called deviations, as they 
equal the differences between the individual data and the sample mean. The random 
variable 

s2 = t (Xi - :X)2 

n - 1 
i=l 

is called the sample variance. Find (a) Var(X) and (b) E[S2]. 

Solution 

(a) Var(X) ~ Gf Var (Ex•) 
(1)2 n 

= ;; ~ Var(Xi) by independence 
1=1 

= n 

(b) We start with the following algebraic identity: 

n 

(n - l)S2 = L (Xi - µ, + µ, - X)2 

i=l 
n n n 

= L:<Xi - µ,) 2 + L:<X - µ,) 2 - 2(X - µ,) L(Xi - µ,) 
i=l i=l i=l 
n 

= L(Xi - µ,) 2 + n(X - µ,) 2 - 2(X - µ,)n(X - µ,) 
i=l 
n 

" 2 - 2 = L..)Xi - µ,) - n(X - µ,) 
i=l 

Taking expectations of the preceding yields 

n 

(n - l)E[S2] = L E[(Xi - µ,) 2] - nE[(X - µ,) 2] 

i=l 
= na2 - nVar(X) 

= (n - l)a2 
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where the final equality made use of part (a) of this example and the one preceding 
it made use of the result of Example 2c, namely, that E[X] = µ,.Dividing through 
by n - 1 shows that the expected value of the sample variance is the distribution 
variance a 2. • 

Our next example presents another method for obtaining the variance of a bino
mial random variable. 

Variance of a binomial random variable 

Compute the variance of a binomial random variable X with parameters n and p. 

Solution Since such a random variable represents the number of successes inn inde
pendent trials when each trial has the common probability p of being a success, we 
may write 

where the Xi are independent Bernoulli random variables such that 

xi= 1~ if the ith trial is a success 
otherwise 

Hence, from Equation (4.1), we obtain 

But 

Thus, 

Var(X) = Var(X1) + · · · + Var(Xn) 

Var(Xi) = E[Xf] - (E[Xi])2 

= E[Xi] - (E[Xi])2 since Xf =Xi 

=p - p2 

Var(X) = np(l - p) 

Sampling from a finite population 

• 

Consider a set of N people, each of whom has an opinion about a certain sub
ject that is measured by a real number v that represents the person's "strength of 
feeling" about the subject. Let Vi represent the strength of feeling of person i, 
i = 1,. . . N. 

Suppose that the quantities Vi,i = 1, ... ,N, are unknown and, to gather infor
mation, a group of n of the N people is "randomly chosen" in the sense that all of the 

( ~) subsets of size n are equally likely to be chosen. These n people are then ques

tioned and their feelings determined. If S denotes the sum of the n sampled values, 
determine its mean and variance. 

An important application of the preceding problem is to a forthcoming election 
in which each person in the population is either for or against a certain candidate or 
proposition. If we take Vi to equal 1 if person i is in favor and 0 if he or she is against, 

N 
then v = I: vifN represents the proportion of the population that is in favor. To 

i=l 
estimate v, a random sample of n people is chosen, and these people are polled. 
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The proportion of.those polled who are in favor-that is, Sin-is often used as an 
estimate ofv. 

Solution For each person i, i = 1, ... , N, define an indicator variable/; to indicate 
whether or not that person is included in the sample. That is, 

if person i is in the random sample 
otherwise 

Now, Scan be expressed by 

so 

Because 

it follows that 

Hence, 

N 

S = Lv;l; 
i=l 

N 

E[S] = L v;E[Ii] 
i=l 

N 

Var(S) = LVar(v;/;) + 2 LL Cov(v;/;, vjlj) 
i=l i<j 

N 

= L vf Var(/;) + 2 LL v;vjCov(l;,lj) 
i=l 

n 
E[/;] = -

N 

i<j 

n n - 1 
E[/;lj] = N N - 1 

Var(/;) = ~ ( 1 - ~) 
n(n - 1) (Nn ) 2 

Cov(/;,/j) = N(N - 1) 

-n(N - n) 

- N2(N - 1) 

N v· 
E[S] = n" ....!.. = nv 

~N 
1=1 

N 
n (N - n)" 2 2n(N - n) "" 

Var(S) = N N ~ v; - N2(N _ l) ~~ v;Vj 
1=1 l<J 
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The expression for Var(S) can be simplified somewhat by using the identity 
N 

(v1 + · · · + VN)2 = L vf + 22: LViVj· After some simplification, we obtain 
i=l i<j 

(tvr ) 
V (s) n(N - n) i=l -2 

ar = ---- --- - v 
N -1 N 

Consider now the special case in which Np of the v's are equal to 1 and the 
remainder equal to 0. Then, in this case, S is a hypergeometric random variable and 
has mean and variance given, respectively, by 

and 

E[S] = nv = np 
. - Np 

smcev= - =p 
N 

Var(S) = n(N - n) (Np - pz) 
N -1 N 

n(N - n) 
= N - 1 p(l - p) 

The quantity Sin, equal to the proportion of those sampled that have values equal to 
1, is such that 

E[~] =p 

Var(~)= N - n p(l - p) 
n n(N - 1) • 

The correlation of two random variablesX and Y, denoted by p(X, Y), is defined, 
as long as Var(X) Var(Y) is positive, by 

It can be shown that 

X Y) Cov(X, Y) 
p ( ' = --:;;:::;::::::::;:;:;:::;::;;::::;:;;:;;::: 

y'Var(X) Var(Y) 

-1 ::;;:; p(X, Y) ::;;:; 1 (4.2) 

To prove Equation ( 4.2), suppose that X and Y have variances given by o} and o}, 
respectively. Then, on the one hand, 

0 ::5 Var ( X + y) 
O'x O'y 

Var(X) Var(Y) 2Cov(X, Y) 
= 2 + 2 + 

O'x O'y O'xO'y 

= 2[1 + p(X, Y)) 

implying that 

-1 ::;;:; p(X, Y) 
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On the other hand, 

0 :s Var ( X - y) 
Clx Cly 

Var(X) Var(Y) 
= +---a} (-ay)2 

2Cov(X, Y) 

= 2[1 - p(X, Y)] 

implying that 
p(X, Y) :s 1 

which completes the proof of Equation ( 4.2). 
In fact, since Var(Z) = 0 implies that Z is constant with probability 1, it follows 

from the proof of Equation ( 4.2) that p(X, Y) = 1 implies that Y =a + bX, where 
b = ay/ax > 0 and p(X, Y) = -1 implies that Y =a + bX, where b = -ay/ax < 0. 
We leave it as an exercise for the reader to show that the reverse is also true: that if 
Y =a + bX, then p(X, Y) is either +1 or -1, depending on the sign of b. 

The correlation coefficient is a measure of the degree of linearity between X 
and Y. A value of p(X, Y) near+ 1 or -1 indicates a high degree of linearity between 
X and Y, whereas a value near 0 indicates that such linearity is absent. A positive 
value of p(X, Y) indicates that Y tends to increase when X does, whereas a negative 
value indicates that Y tends to decrease when X increases. If p(X, Y) = 0, then X 
and Y are said to be uncorrelated. 

Let IA and IB be indicator variables for the events A and B. That is, 

Then 

so 

ifA occurs 
otherwise 

if B occurs 
otherwise 

E[IA] = P(A) 

E[IB] = P(B) 

E[IAIB] = P(AB) 

Cov(IA,IB) = P(AB) - P(A)P(B) 

= P(B)[P(AIB) - P(A)] 

Thus, we obtain the quite intuitive result that the indicator variables for A and B 
are either positively correlated, uncorrelated, or negatively correlated, depending 
on whether P(AIB) is, respectively, greater than, equal to, or less than P(A). • 

Our next example shows that the sample mean and a deviation from the sample 
mean are uncorrelated. 

Let X1, ... , Xn be independent and identically distributed random variables having 
variance a 2 . Show that 

Cov(Xi - X, X) = 0 
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Solution We have 

Cov(X; - X,X) = Cov(X;,X) - Cov(X,X) 

= Cov (xi, ~ t X;) - Var(X) 
J=l 

1 n a2 
= - L Cov(Xi,Xj) 

n. n 
1=1 

=- -
n 

a2 
-=0 
n 

where the next-to-last equality uses the result of Example 4a and the final equality 
follows because 

Cov(Xi,Xj) = { ~2 if j ~ i by independence 
if j = i since Var(Xi) = a 2 

Although X and the deviation Xi - X are uncorrelated, they are not, in gen
eral, independent. However, in the special case where the Xi are normal random 
variables, it turns out that not only is X independent of a single deviation, but it is 
independent of the entire sequence of deviations Xj - X,j = 1, ... , n. This result 
will be established in Section 8, where we will also show that, in this case, the sample 
mean X and the sample variance s2 are independent, with (n - 1)S2 /a2 having a 
chi-squared distribution with n 1 degrees of freedom. (See Example 4a for the 
definition of s2.) • 

Consider m independent trials, each of which results in any of r possible outcomes 
with probabilities pi, ... ,p,, L~=lPi = 1. Ifwe letN;,i = 1, ... ,r, denote the number 
of the m trials that result in outcome i, then Ni, N2, . .. , N, have the multinomial 
distribution 

For i ~ j, it seems likely that when Ni is large, Nj would tend to be small; hence, it is 
intuitive that they should be negatively correlated. Let us compute their covariance 
by using Proposition 4.2(iv) and the representation 

where 

m m 

N; = Ll;(k) and Nj = Llj(k} 
k=l 

li(k} = { ~ 

lj(k) = { ~ 

k=l 

if trial k results in outcome i 
otherwise 

if trial k results in outcome j 
otherwise 
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From Proposition 4.2(iv), we have 

m m 

Cov(Ni,Nj) =LL Cov(li(k),lj(£)) 
t=l k=l 

Now, on the one hand, when k -:I e, 

Cov(h(k), lj(£)) = 0 

since the outcome of trial k is independent of the outcome of trial e. On the other hand, 

Cov(/i(£),/j(£)) = E[[j(£)lj(£)] - E[h(£)]E[lj(£)] 

= 0 - PiPj = -PiPj 

where the equation uses the fact that h(£)lj(£) = 0, since trial e cannot result in both 
outcome i and outcome j. Hence, we obtain 

which is in accord with our intuition that Ni and Nj are negatively correlated. • 

5 Conditional Expectation 

Example 
Sa 

5.1 Definitions 

If X and Y are jointly discrete random variables, then the conditional probability 
mass function of X, given that Y = y, is defined for all y such that 
P{Y = y} > 0, by 

p(x,y) 
Px1y(xly) = P{X = x!Y = y} = -

py(y) 

It is therefore natural to define, in this case, the conditional expectation of X given 
that Y = y, for all values of y such that py(y) > 0, by 

x 

= ,L:xpx1y(xly) 
x 

If X and Y are independent binomial random variables with identical parameters n 
and p, calculate the conditional expected value of X given that X + Y = m. 

Solution Let us first calculate the conditional probability mass function of X given 
that X + Y = m. Fork :5 min(n,m), 

P{X=klX + Y=m}= P{X=k,X + Y=m} 
P{X + Y=m} 

= 

P{X = k, Y = m - k} 

P{X + Y=m} 
P{X = k}P{Y = m - k} 

P{X + Y=m} 
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where we have used the fact that X + Y is a binomial random variable with param
eters 2n and p. Hence, the conditional distribution of X, given that X + Y = m, is 
the hypergeometric distribution, and from Example 2g, we obtain 

m 
E[XIX + Y=m]= ""f • 

Similarly, if X and Y are jointly continuous with a joint probability density func
tion f(x,y), then the conditional probability density of ~X, given that 
Y = y, is defined for all values of y such that fy(y) > 0 by 

f(x,y) 
fXJY(Xly) = fy(y) 

It is natural, in this case, to define the conditional expectation of X, given that 
y =y, by 

E[XI Y = y] = 1_: xfxJY(xly) dx 

provided thatfy(y) > 0. 

Suppose that the joint density of X and Y is given by 

e-xfye-Y 
f(x,y) = 0 < x < oo, 0 < y < oo 

y 

Compute E[XIY = y]. 

Solution We start by computing the conditional density 

f(x,y) 
fXJY(Xly) = fy(y) 

f(x,y) 

= i:f(x,y) dx 

(1/y)e-xfy e-Y 
= ~~~~~~~-

fo 00 (l/y)e-xfy e-Y dx 

(1/y)e-xfy 

= fooo (l/y)e-xfy dx 

= ~e-xfy 
y 
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Hence, the conditional distribution of X, given that Y = y, is just the exponential 
distribution with mean y. Thus, 

E[XIY = y] = -e-xfy dx = y 100 x 

0 y • 
Remark Just as conditional probabilities satisfy all of the properties of ordinary 
probabilities, so do conditional expectations satisfy the properties of ordinary expec
tations. For instance, such formulas as 

{

Lg(x)px1Y(xly) 
x 

E[g(X)IY = y] = 1_: g(x)fx1Y(xly) dx 

in the discrete case 

in the continuous case 

and 

remain valid. As a matter of fact, conditional expectation given that Y = y can be 
thought of as being an ordinary expectation on a reduced sample space consisting 
only of outcomes for which Y = y. • 

5.2 Computing Expectations by Conditioning 

Let us denote by E[XIY] that function of the random variable Y whose value at 
Y = y is E[XIY = y]. Note that E[XIY] is itself a random variable. An extremely 
important property of conditional expectations is given by the following proposition. 

E[X] = E[E[XIY]] (5.1) 

If Y is a discrete random variable, then Equation (5.1) states that 

E[X] = LE[XIY = y]P{Y = y} (5.la) 
y 

whereas if Y is continuous with density fy(y), then Equation (5.1) states 

E[X] = 1_: E[XIY = y]fy(y) dy (5.lb) 

We now give a proof of Equation (5.1) in the case where X and Y are both discrete 
random variables. 

Proof of Equation (5.1) When X and Y Are Discrete: We must show that 

E[X] = LE[XIY = y]P{Y = y} (5.2) 
y 
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Now, the right-hand side of Equation (5.2) can be written as 

L E[XIY = y]P{Y = y} = L :LxP{X = xlY = y}P{Y = y} 
y y x 

= """" XP{X = X, y = y} P{Y = } 
~~ P{Y=y} y 

y x 

= LLxP{X=x,Y=y} 
y x 

= LxLP{X=x,Y=y} 
x y 

= :LxP{X=x} 
x 

=E[X] 

and the result is proved. D 

One way to understand Equation (5.2) is to interpret it as follows: To calcu
late E[X], we may take a weighted average of the conditional expected value of X 
given that Y = y, each of the terms E[XIY = y] being weighted by the probabil
ity of the event on which it is conditioned. (Of what does this remind you?) This 
is an extremely useful result that often enables us to compute expectations easily 
by first conditioning on some appropriate random variable. The following examples 
illustrate its use. 

A miner is trapped in a mine containing 3 doors. The first door leads to a tunnel that 
will take him to safety after 3 hours of travel. The second door leads to a tunnel that 
will return him to the mine after 5 hours of travel. The third door leads to a tunnel 
that will return him to the mine after 7 hours. If we assume that the miner is at all 
times equally likely to choose any one of the doors, what is the expected length of 
time until he reaches safety? 

Solution Let X denote the amount of time (in hours) until the miner reaches safety, 
and let Y denote the door he initially chooses. Now, 

However, 

E[X] = E[XIY = l]P{Y = 1} + E[XIY = 2]P{Y = 2} 

+ E[XIY = 3]P{Y = 3} 

1 
= 3CE[XIY = 1] + E[XIY = 2] + E[XIY = 3]) 

E[XIY = 1] = 3 

E[XIY = 2] = 5 + E[X] 

E[XIY = 3] = 7 + E[X] 

(5.3) 

To understand why Equation (5.3) is correct, consider, for instance, E[XI Y = 2] 
and reason as follows: If the miner chooses the second door, he spends 5 hours in 
the tunnel and then returns to his cell. But once he returns to his cell, the prob
lem is as before; thus, his expected additional time until safety is just E[X]. Hence, 
E[XI Y = 2] = 5 + E[X]. The argument behind the other equalities in Equation (5.3) 
is similar. Hence, 
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1 
E[X] = 3(3 + 5 + E[X] + 7 + E[X]) 

or 

E[X] = 15 • 
Expectation of a sum of a random number of random variables 

Suppose that the number of people entering a department store on a given day is 
a random variable with mean 50. Suppose further that the amounts of money spent 
by these customers are independent random variables having a common mean of 
$8. Finally, suppose also that the amount of money spent by a customer is also inde
pendent of the total number of customers who enter the store. What is the expected 
amount of money spent in the store on a given day? 

Solution If we let N denote the number of customers who enter the store and Xi 
the amount spent by the ith such customer, then the total amount of money spent 

N 
can be expressed as L xj. Now, 

i=l 

But 

E [ ~X;IN~n] d[ ~X;IN~n] 

which implies that 

Thus, 

~ E [ ~ X;] by the independence of the X; and N 

= nE[X] where E[X] = E[Xi] 

E [ ~X;IN] ~NE[X] 

Hence, in our example, the expected amount of money spent in the store is 50 x $8, 
m~m • 

The game of craps is begun by rolling an ordinary pair of dice. If the· sum of the 
dice is 2, 3, or 12, the player loses. If it is 7 or 11, the player wins. If it is any other 
number i, the player continues to roll the dice until the sum is either 7 or i. If it is 
7, the player loses; if it is i, the player wins. Let R denote the number of rolls of the 
dice in a game of craps. Find 
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(a) E[R]; 

(b) E[Rlplayer wins]; 
(c) E[Rlplayer loses]. 

Solution If we let P; denote the probability that the sum of the dice is i, then 

i - 1 
P; = P14-i = ~· i =2, ... ,7 

To compute E[R], we condition on S, the initial sum, giving 

12 

E[R] = L E[RIS = i]P; 
i=2 

However, 

{
1, 

E[RIS = i] = 1 + 1 
P; + P1' 

if i = 2,3, 7, 11, 12 

otherwise 

The preceding equation follows because if the sum is a value i that.. does not end 
the game, then the dice will continue to be rolled until the sum is either i or 7, and 
the number of rolls until this occurs is a geometric random variable with parameter 
P; + P1. Therefore, 

6 P· 10 P· 
E[R] = 1 + L P· l p + L P· l p 

i=41+1 i=81+1 

= 1 + 2(3/9 + 4/10 + 5/11) = 3.376 

To determine E[Rlwin], let us start by determiningp, the probability that the player 
wins. Conditioning on S yields 

12 

p = L P{winlS = i}P; 
i=2 

6 P; 10 P; 
= P1 + P11 + L P· p P; + L P· p P; 

i=4t+7 i=81+1 

= 0.493 

where the preceding uses the fact that the probability of obtaining a sum of i before 
one of 7 is Pif(P; + P7). Now, let us determine the conditional probability mass 
function of S, given that the player wins. Letting Q; = P{S = ilwin}, we have 

and, for i = 4, 5, 6, 8, 9, 10, 

Q. _ P{S = i, win} 
1 - P{win} 

P;P{winlS = i} 
=-----

p 

p?-
l =----

p(P; + P1) 
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Now, conditioning on the initial sum gives 

E[Rlwin] = LE[Rlwin,S = i]Qi 
i 

However, given that the initial sum is i, the number of additional rolls needed and 
the outcome (whether a win or a loss) are independent. (This is easily seen by first 
noting that conditional on an initial sum of i, the outcome is independent of the 
number of additional dice rolls needed and then using the symmetry property of 
independence, which states that if event A is independent of event B, then event B 
is independent of event A.) Therefore, 

E[Rlwin] = L E[RIS = i]Qi 
i 

Although we could determine E[Rlplayer loses] exactly as we did E[Rlplayer 
wins], it is easier to use 

implying that 

E[R] = E[Rlwin]p + E[Rllose](l - p) 

E[Rllose] = E[R] - E[Rlwin]p = 3.801 
1 - p 

The bivariate normal joint density function of the random variables X and Y is 

1 1 X - /J,x Y - /J,y I [ 2 ( )2 f(x,y) = exp - + 
2naxayJ1 - p2 2(1 - p2) ( ax ) cry 

_ 2 p (x - /-lx)(y - /J,y) J } 
C1xC1y 

• 

We will now show that p is the correlation between X and Y. As shown in Exam
ple Sc, /-lx = E[X], a} = Var(X), and /-ly = E[Y], a} = Var(Y). Consequently, 

Corr(X, Y) = Cov(X, Y) 
C1xC1y 

E[XY] - /-lx/-ly 
=------'-

To determine E[XY], we condition on Y. That is, we use the identity 

E[XY] = E[E[XYIY]) 
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Recalling from Example 5d that the conditional distribution of X given that Y = y 
is normal with mean µx + p~(y - µy), we see that 

y 

Consequently, 

implying that 

Therefore, 

E[XYIY = y] = E[XylY = y] 

=yE[XIY=y] 

= Y [µx + p :; (y - µy)] 

<1'x 2 = yµx + p-(y - µyy) 
<1'y 

<1'x 2 
E[XYIY] = Yµx + p-(Y - µyY) 

<1'y 

E[XY] = E [ Yµx + p :; (Y2 - µyY)] 

= µxE[Y] + p ax E[Y2 - µy Y] 
<1'y 

= µxµy + p :; (ErY21 - µn 

<1'x = µxµy + p-Var(Y) 
<1'y 

= µxµy + P<1'x<1'y 

paxay 
Corr(X, Y) = -- = p 

<1'x<1'y • 
Sometimes E[X] is easy to compute, and we use the conditioning identity to 

compute a conditional expected value. This approach is illustrated by our next 
example. 

Consider n independent trials, each of which results in one of the outcomes 1, ... , k, 
with respective probabilities pi, ... ,pk, L7=iPi = 1. Let Ni denote the number of 
trials that result in outcome i, i = 1, ... , k. For i =F j, find 

(a) E[NjlNi > O] and 

Solution To solve (a), let 

Then 
E[Nj] = E[Njll = O]P{/ = O} + E[Njll = l]P{/ = l} 

or, equivalently, 

Now, the unconditional distribution of Nj is binomial with parameters n,Pi· Also, 
given that Ni = r, each of the n - r trials that does not result in outcome i will, 
independently, result in outcome j with probability P(jjnot i) ~ 1~~;. Consequently, 
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the conditional distribution of Ni, given that Ni = r, is binomial with parameters 
n - r, 1~~;. Because P{Ni = O} = (1 - Pi)n, the preceding equation yields 

npi = n-1 Pi (l - Pi)n + E[NjlNi > 0](1 - (1 - Pi)n) 
- Pi 

giving the result 
1 - (1 - Pi)n-1 

E[NilNi > 0] = npi l l - ( - Pi)n 

We can solve part (b) in a similar manner. Let 

Then 

{ 
0, ifNi = 0 

J = 1, ~fNi = 1 
2, 1fNi > 1 

E[Ni] = E[Njll = O]P{J = O} + E[Nill = l]P{J = l} 

+ E[Nill = 2]P{J = 2} 

or, equivalently, 

E[Nj] = E[NilNi = O]P{Ni = O} + E[NilNi = l]P{Ni = 1} 

+ E[NilNi > l]P{Ni > l} 

This equation yields 

Pi (l )n ( 1) Pi (l )n-1 npj=n-- - Pi + n - --npi - Pi 
1 - Pi 1 - Pi 

+ E[NilNi > 1](1 - (1 - Pi)n - npi(l - Pir-1) 

giving the result 

E[NjlNi > l] = npi[l - (1 - Pi)n-l - (n - l)pi(l - Pi)n-2] • 

1 - (1 - Pi)n - npi(l - Pi)n-l 

It is also possible to obtain the variance of a random variable by conditioning. 
We illustrate this approach by the following example. 

Variance of the geometric distribution 

Independent trials, each resulting in a success with probability p, are successively 
performed. Let N be the time of the first success. Find Var(N). 

Solution Let Y = 1 if the first trial results in a success and Y = 0 otherwise. Now, 

Var(N) = E[N2] - (E[N])2 

To calculate E[N2], we condition on Y as follows: 

However, 

E[N2 1Y = 1] = 1 

E[N2 1Y = O] = E[(l + N)2] 
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These two equations follow because, on the one hand, if the first trial results in a 
success, then, clearly, N = 1; thus, N2 = 1. On the other hand, if the first trial results 
in a failure, then the total number of trials necessary for the first success will have 
the same distribution as 1 (the first trial that results in failure) plus the necessary 
number of additional trials. Since the latter quantity has the same distribution as N, 
we obtain E[N2 1Y = O] = E[(l + N)2]. Hence, 

E[N2] = E[N21Y = l]P{Y = 1} + E[N21Y = O]P{Y = O} 

= p + (1 - p)E[(1 + N)2] 

= 1 + (1 - p)E[2N + N 2] 

However, E[N] = 1/p; therefore, 

or 

Consequently, 

E[N2] = 1 + 2(l - p) + (1 - p)E[N2] 
p 

Var(N) = E[N2] - (E[N])2 

- (~)2 2-p 
=IT 

1-p 
= IT • 

Consider a gambling situation in which there are r players, with player i initially 
having ni units, ni > 0, i = 1, ... , r. At each stage, two of the players are chosen to 
play a game, with the winner of the game receiving 1 unit from the loser. Any player 
whose fortune drops to 0 is eliminated, and this continues until a single player has 
all n = I:~=l ni units, with that player designated as the victor. Assuming that the 
results of successive games are independent and that each game is equally likely to 
be won by either of its two players, find the average number of stages until one of 
the players has all n units. 

Solution To find the expected number of stages played, suppose first that there are 
only 2 players, with players 1 and 2 initially having j and n - j units, respectively. 
Let Xj denote the number of stages that will be played, and let mj = E[Xj]. Then, 
for j = 1, ... ,n - 1, 

Xj = 1 + Aj 

where Aj is the additional number of stages needed beyond the first stage. Taking 
expectations gives 

mj = 1 + E[Aj] 

Conditioning on the result of the first stage then yields 

mj = 1 + E[Ajll wins first stage]l/2 + E[Ajl2 wins first stage]l/2 

Now, if player 1 wins at the first stage, then the situation from that point on is exactly 
the same as in a problem that supposes that player 1 starts with j + 1 and player 2 
with n - (j + 1) units. Consequently, 

E[Ajll wins first stage]= mj+l 

345 



346 

Properties of Expectation 

and, analogously, 

E[Ajl2 wins first stage] = mj-1 

Thus, 

or, equivalently, 

mj+l =2mj - mj-1 - 2, j=l, ... ,n - 1 

Using that mo = 0, the preceding equation yields 

suggesting that 

m1=2m1 - 2 

m3 = 2m2 - ml - 2 = 3m1 - 6 = 3(m1 - 2) 

m4 = 2m3 - m1 - 2 = 4m1 - 12 = 4(m1 - 3) 

mi = i(m1 - i + 1), i = 1, ... ,n 

(5.4) 

(5.5) 

To prove the preceding equality, we use mathematical induction. Since we've already 
shown the equation to be true for i = 1, 2, we take as the induction hypothesis that 
it is true whenever i :5 j < n. Now we must prove that it is true for j + 1. Using 
Equation (5.4) yields 

mj+l = 2mj - mj-1 - 2 
= 2j(m1 - j + 1) - (j - l)(m1 - j + 2) - 2 (by the induction hypothesis) 

= (j + l)m1 - 2j2 + 2j + j2 - 3j + 2 - 2 

= (j + l)m1 - j2 - j 

= (j + l)(m1 - J) 

which completes the induction proof of (5.5). Letting i = n in (5.5), and using that 
mn = 0, now yields that 

which, again using (5.5), gives the result 

mi= i(n - i) 

Thus, the mean number of games played when there are only 2 players with initial 
amounts i and n - i is the product of their initial amounts. Because both players 
play all stages, this is also the mean number of stages involving player 1. 

Now let us return to the problem involving r players with initial amounts ni, i = 
1, ... , r, L:r=l ni = n. Let X denote the number of stages needed to obtain a victor, 
and let Xi denote the number of stages involving player i. Now, from the point of 
view of player i, starting with ni, he will continue to play stages, independently being 
equally likely to win or lose each one, until his fortune is either n or 0. Thus, the 
number of stages he plays is exactly the same as when he has a single opponent with 
an initial fortune of n - ni. Consequently, by the preceding result, it follows that 
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so 

[ 
r ] r r 

E t;x; = t;n;(n - n;) = n2 - t;nr 
But because each stage involves two players, 

1 r 

X=2LX; 
i=l 

Taking expectations now yields 

E[X] = ~ (n2 - tnr) 
1=1 

It is interesting to note that while our argument shows that the mean number of 
stages does not depend on the manner in which the teams are selected at each stage, 
the same is not true for the distribution of the number of stages. To see this, suppose 
r = 3, ni = n2 = 1, and n3 = 2. If players 1 and 2 are chosen in the first stage, then 
it will take at least three stages to determine a winner, whereas if player 3 is in the 
first stage, then it is possible for there to be only two stages. • 

In our next example, we use conditioning to verify that the expected number of 
uniform (0, 1) random variables that need to be added for their sum to exceed 1 is 
equal toe. 

Let U1, U2, . .. be a sequence of independent uniform (0, 1) random variables. Find 
E[N] when 

N = min { n: t U; > 1} 
1=1 

Solution We will find E[N] by obtaining a more general result. For x e [O, l], let 

N(x) =min {n: t U; > x} 
1=1 

and set 
m(x) = E[N(x)] 

That is, N(x) is the number of uniform (0, 1) random variables we must add until 
their sum exceeds x, and m(x) is its expected value. We will now derive an equation 
for m(x) by conditioning on U1. This gives, from Equation (5.lb), 

m(x) = fo1 
E[N(x)IU1 = y] dy (5.6) 

Now, 

E[N( )IU - 1-{l ify > x 
x 1 - Y - 1 -l;" m(x - y) if y :s x (5.7) 

The preceding formula is obviously true when y > x. It is also true when y :5 x, 
since, if the first uniform value is y, then, at that point, the remaining number of 
uniform random variables needed is the same as if we were just starting and were 
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going to add uniform random variables until their sum exceeded x - y. Substituting 
Equation (5.7) into Equation (5.6) gives 

m(x) = 1 +fox m(x - y)dy 

= 1 + fox m(u)du 

Differentiating the preceding equation yields 

m'(x) = m(x) 

or, equivalently, 

Integrating this equation gives 

m'(x) = 1 
m(x) 

by letting 
U=X - y 

log[m(x)] = x + c 

or 
m(x) =kt! 

Since m(O) = 1, it follows that k = 1, so we obtain 

m(x) = t! 

Therefore, m(l), the expected number of uniform (0, 1) random variables that need 
to be added until their sum exceeds 1, is equal toe. • 

5.3 Computing Probabilities by Conditioning 

Not only can we obtain expectations by first conditioning on an appropriate random 
variable, but we can also use this approach to compute probabilities. To see this, let 
E denote an arbitrary event, and define the indicator random variable X by 

X _ {1 if E occurs 
- 0 if E does not occur 

It follows from the definition of X that 

E[X] = P(E) 

E[XIY = y] = P(EIY = y) for any random variable Y 

Therefore, from Equations (5.la) and (5.lb), we obtain 

P(.E) = L P(EI Y = y)P(Y = y) if Y is discrete 
y 

= 1_: P(EIY = y)fy(y)dy if Y is continuous 
(5.8) 

Note that if Y is a discrete random variable taking on one of the values y1, ... ,yn, 
then by defining the events Fi, i = 1, ... , n, by Fi = {Y = yi}, Equation (5.8) reduces 
to the familiar equation 

n 

P(E) = L P(E!Fi)P(Fi) 
i=l 

where Fi, ... , Fn are mutually exclusive events whose union is the sample space. 
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The best-prize problem 

Suppose that we are to be presented with n distinct prizes, in sequence. After being 
presented with a prize, we must immediately decide whether to accept it or to reject 
it and consider the next prize. The only information we are given when deciding 
whether to accept a prize is the relative rank of that prize compared to ones already 
seen. That is, for instance, when the fifth prize is presented, we learn how it compares 
with the four prizes we've already seen. Suppose that once a prize is rejected, it is 
lost, and that our objective is to maximize the probability of obtaining the best prize. 
Assuming that all nl orderings of the prizes are equally likely, how well can we do? 

Solution Rather surprisingly, we can do quite well. To see this, fix a value k, 0 s 
k < n, and consider the strategy that rejects the first k prizes and then accepts the 
first one that is better than all of those first k. Let Pk(best) denote the probability that 
the best prize is selected when this strategy is employed. To compute this probability, 
condition on X, the position of the best prize. This gives 

n 

Pk(best) = L Pk(bestlX = i)P(X = i) 
i=1 
1 n 

= - L Pk(bestlX = i) 
n i=1 

Now, on the one hand, if the overall best prize is among the first k, then no prize is 
ever selected under the strategy considered. That is, 

Pk(bestlX = i) = 0 if i s k 

On the other hand, if the best prize is in position i, where i > k, then the best prize 
will be selected if the best of the first i - 1 prizes is among the first k (for then none 
of the prizes in positions k + 1, k + 2, ... , i - 1 would be selected). But, conditional 
on the best prize being in position i, it is easy to verify that all possible orderings of 
the other prizes remain equally likely, which implies that each of the first i - 1 prizes 
is equally likely to be the best of that batch. Hence, we have 

Pk(bestlX = i) = P{best of first i - 1 is among the first klX = i} 

k 
=-- if i > k 

i - 1 

From the preceding, we obtain 

k n 1 
Pk(best) = - L . 1 

n i=k+1 z -

~ ~ r _i_dx 
n lk+1 x - 1 

=~log (n ~ 1) 

~~log(~) 
Now, if we consider the function 
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then 

/ 1 (n) 1 g (x) = - log - - -
n x n 

so 

(n) · n 
g(x) = O=>log i' = 1 =>x =-; 

Thus, since Pk(best) ::::-: g(k), we see that the best strategy of the type considered is to 
let the first nle prizes go by and then accept the first one to appear that is better than 
all of those. In addition, since g(n/e) = 1/e, the probability that this strategy selects 
the best prize is approximately 1/e ::::-: .36788. 

Remark Most people are quite surprised by the size of the probability of obtaining 
the best prize, thinking that this probability would be close to 0 when n is large. How
ever, even without going through the calculations, a little thought reveals that the 
probability of obtaining the best prize can be made reasonably large. Consider the 
strategy of letting half of the prizes go by and then selecting the first one to appear 
that is better than all of those. The probability that a prize is actually selected is the 
probability that the overall best is among the second half, and this is ! . In addition, 
given that a prize is selected, at the time of selection that prize would have been 
the best of more than n/2 prizes to have appeared and would thus have probability 
of at least i of being the overall best. Hence, the strategy of letting the first half of 
all prizes go by and then accepting the first one that is better than all of those prizes 
has a probability greater than ! of obtaining the best prize. • 

Let Ube a uniform random variable on (0, 1), and suppose that the conditional 
distribution of X, given that U = p, is binomial with parameters n and p. Find the 
probability mass function of X. 

Solution Conditioning on the value of U gives 

P{X=i}= fo1 
P{X=ilU=p}fu(p)dp 

= fo 1
P{X=ilU=p}dp 

n! 11 i n-i 
= "I( - )I p (1 - p) dp 

i. n i . 0 

Now, it can be shown that 

Hence, we obtain 

11 "I( ')I 
i 1 - n-i d - l. n - l . 

o P ( p) P - (n + 1)! 

P{X = i} = _2_l i = 0, ... , n 
n+ 

That is, we obtain the surprising result that if a coin whose probability of coming 
up heads is uniformly distributed over (0, 1) is flipped n times, then the number of 
heads occurring is equally likely to be any of the values 0, ... , n. 

Because the preceding conditional distribution has such a nice form, it is worth 
trying to find another argument to enhance our intuition as to why such a result 
is true. To do so, let U, U1, ... , Un be n + 1 independent uniform (0, 1) random 
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variables, and let X denote the number of the random variables Ui, ... , Un that are 
smaller than U. Since all the random variables U, U1, ... , Un have the same distri
bution, it follows that U is equally likely to be the smallest, or second smallest, or 
largest of them; so X is equally likely to be any of the values 0, 1, ... , n. However, 
given that U = p, the number of the Ui that are less than U is a binomial random 
variable with parameters n and p, thus establishing our previous result. • 

Suppose that X and Y are independent continuous random variables having densi
ties fx andfy, respectively. Compute P{X < Y}. 

Solution Conditioning on the value of Y yields 

where 

P{X < Y} = 1_: P{X < YIY = y}fy(y) dy 

= 1_: P{X < ylY = y}fy(y) dy 

= 1_: P{X < y}fy(y} dy by independence 

= 1_: Fx(y)fy(y) dy 

• 
Suppose that X and Y are independent continuous random variables. Find the dis
tribution of X + Y. 

Solution By conditioning on the value of Y, we obtain 

P{X + Y < a}= 1_: P{X + Y < aiY = y}fy(y) dy 

= 1_: P{X + y < al Y = y}fy(y) dy 

= 1_: P{X < a - y}fy(y) dy 

= 1_: Fx(a - y)fy(y) dy 

5.4 Conditional Variance 

• 

Just as we have defined the conditional expectation of X given the value of Y, we 
can also define the conditional variance of X given that Y = y: 

Var(XIY) = E[(X - E[XIY])2 1Y] 

That is, Var(Xi Y) is equal to the (conditional) expected square of the difference 
between X and its (conditional) mean when the value of Y is given. In other words, 
Var(Xi Y) is exactly analogous to the usual definition of variance, but now all expec
tations are conditional on the fact that Y is known. 

There is a very useful relationship between Var(X), the unconditional variance 
of X, and Var(Xi Y), the conditional variance of X given Y, that can often be applied 
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to compute Var(X). To obtain this relationship, note first that by the same reasoning 
that yields Var(X) = E[X2] - (E[X])2, we have 

so 

Var(XiY) = E[X21Y] - (E[XIY])2 

E[Var(XiY)] = E[E[X21Y]] - E[(E[XIY])2] 

= E[X2] - E[(E[XIY])2] 

Also, since E[E[XIY]] = E[X], we have 

Var(E[XIY]) = E[(E[XIY])2] - (E[X])2 

(5.9) 

(5.10) 

Hence, by adding Equations (5.9) and (5.10), we arrive at the following proposition. 

Proposition The conditional variance formula 
S.2 

Example 
So 

Var(X) = E[Var(XiY)] + Var(E[XIY]) 

Suppose that by any time t the number of people who have arrived at a train depot 
is a Poisson random variable with mean J..t. If the initial train arrives at the depot at a 
time (independent of when the passengers arrive) that is uniformly distributed over 
(0, T), what are the mean and variance of the number of passengers who enter the 
train? 

Solution For each t ~ 0, let N(t) denote the number of arrivals by t, and let Y 
denote the time at which the train arrives. The random variable of interest is then 
N(Y). Conditioning on Y gives 

E[N(Y)IY = t] = E[N(t)IY = t] 
= E[N(t)] by the independence of Y and N(t) 

= J..t since N(t) is Poisson with mean J..t 

Hence, 

E[N(Y)IY] = >..Y 

so taking expectations gives 

E[N(Y)] = >..E[Y] = >..~ 

To obtain Var(N(Y)), we use the conditional variance formula: 

Thus, 

Var(N(Y)IY = t) = Var(N(t)IY = t) 
= Var(N(t)) by independence 

= )..t 

Var(N(Y)IY) = >..Y 

E[N(Y)IY] = >..Y 
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Hence, from the conditional variance formula, 

Var(N(Y)) = E[A.Y] + Var(A.Y) 

T T2 

=A.2 + )..2 12 

where we have used the fact that Var(Y) = T2 /12. • 
Variance of a sum of a random number of random variables 

Let X1, X2, ... be a sequence of independent and identically distributed random vari
ables, and let N be a nonnegative integer-valued random variable that is independent 

of the sequence Xi, i 2:: 1. To compute Var (t xi), we condition on N: 
1=1 

E [t.XilN] =NE[X] 

Var ( t. X;IN) = NVar(X) 

The preceding result follows because, given N, I:f:1 Xi is just the sum of a fixed 
number of independent random variables, so its expectation and variance are just 
the sums of the individual means and variances, respectively. Hence, from the con
ditional variance formula, 

Var (t.X,) = E[N]Var(X) + (E[X]J2Var(N) • 

6 Conditional Expectation and Prediction 

Proposition 
6.1 

Sometimes a situation arises in which the value of a random variable X is observed 
and then, on the basis of the observed value, an attempt is made to predict the 
value of a second random variable Y. Let g(X) denote the predictor; that is, if X 
is observed to equal x, then g(x) is our prediction for the value of Y. Clearly, we 
would like to choose g so that g(X) tends to be close to Y. One possible criterion for 
closeness is to choose g so as to minimize E[(Y - g(X))2]. We now show that, under 
this criterion, the best possible predictor of Y is g(X) = E[YIX]. 

Proof 

E[(Y - g(X))21X] = E[(Y - E[YIX] + E[YIX] - g(X))21X] 

= E[ (Y - E[YIX])2 IX] 

+ E[ (E{YIX] - g(X) )2 IX] 

+ 2E[(Y - E[YIX])(E[YIX] - g(X))IX] (6.1) 
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However, given X,E[YIX] - g(X), being a function of X, can be treated as a con
stant. Thus, 

E[(Y - E[YIX])(E[YIX] - g(X))IX] 

= (E[YIX] - g(X))E[Y - E[YIX]IX] 

= (E[YIX] - g(X))(E[YIX] - E[YIX]) 

=0 

Hence, from Equations (6.1) and (6.2), we obtain 

(6.2) 

and the desired result follows by taking expectations of both sides of the preceding 
expression. 0 

Remark A second, more intuitive, although less rigorous, argument verifying Propo
sition 6.1 is as follows: It is straightforward to verify that E[(Y - c)2] is minimized 
at c = E[Y]. (See Theoretical Exercise 1.) Thus, if we want to predict the value of 
Y when there are no data available to use, the best possible prediction, in the sense 
of minimizing the mean square error, is to predict that Y will equal its mean. How
ever, if the value of the random variable Xis observed to be x, then the prediction 
problem remains exactly as in the previous (no-data) case, with the exception that all 
probabilities and expectations are now conditional on the event that X = x. Hence, 
the best prediction in this situation is to predict that Y will equal its conditional 
expected value given that X = x, thus establishing Proposition 6.1. • 

Suppose that the son of a man of height x (in inches) attains a height that is normally 
distributed with mean x + 1 and variance 4. What is the best prediction of the height 
at full growth of the son of a man who is 6 feet tall? 

Solution Formally, this model can be written as 

Y=X+l+e 

where e is a normal random variable, independent of X, having mean 0 and variance 
4. The X and Y, of course, represent the heights of the man and his son, respectively. 
The best prediction E[YIX = 72] is thus equal to 

E[YIX = 72] = E[X + 1 + elX = 72] 

= 73 + E[elX = 72] 

= 73 + E(e) by independence 

=73 • 
Suppose that if a signal values is sent from location A, then the signal value received 
at location Bis normally distributed with parameters (s, 1). If S, the value of the 
signal sent at A, is normally distributed with parameters (µ,, a 2), what is the best 
estimate of the signal sent if R, the value received at B, is equal tor? 
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Solution Let us start by computing the conditional density of S given R. We have 

.f". ( I ) fs,R(s,r) 
JSIR s r = fR(r) 

fs(s)fR1s(rJs) 
= fR(r) 

where K does not depend on s. Now, 

(s ~a;)2 + (r ~ s)2 =s2 (2!2 + ~) - (:2 + r)s + C1 

~ 1 ~;' [? -2 (~ : :Z}] + c, 

= 1 ~:2 (s - (µ + ra2))2 C 
1 + a2 + 2 

where C1 and C2 do not depend on s. Hence, 

fs1R(sjr) = C exp 

-[s - (µ + ra2)]2 
1 + a 2 

where C does not depend on s. Thus, we may conclude that the conditional distribu
tion of S, the signal sent, given that r is received, is normal with mean and variance 
now given by 

2 
E[SIR = r] = µ + ra 

1 + a 2 

a2 
Var(SJR = r) = 1 2 +a 

Consequently, from Proposition 6.1, given that the value received is r, the best esti
mate, in the sense of minimizing the mean square error, for the signal sent is 

1 a 2 

E[SIR = r] = 1 + a2 µ + 1 + a2 r 

Writing the conditional mean as we did previously in the chapter is informative, for 
it shows that it equals a weighted average of µ, the a priori expected value of the 
signal, and r, the value received. The relative weights given to µ and r are in the 
same proportion to each other as 1 (the conditional variance of the received signal 
whens is sent) is to a 2 (the variance of the signal to be sent). • 

In digital signal processing, raw continuous analog data X must be quantized, or 
discretized, in order to obtain a digital representation. In order to quantize the raw 
data X, an increasing set of numbers a;, i = 0, ±1, ±2, ... , such that lim a; = oo 

i--++oo 
and . lim a; = -oo is fixed, and the raw data are then quantized according to the 

1-+-00 . 
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interval (ai, ai+l] in which X lies. Let us denote by Yi the discretized value when 
XE (ai,ai+d• and let Y denote the observed discretized value-that is, 

Y = Yi if ai < X s ai+1 

The distribution of Y is given by 

P{Y = yi} = Fx(ai+d - Fx(ai) 

Suppose now that we want to choose the values Yi. i = 0, ±1, ±2, ... so as to 
minimize E[(X - Y)2], the expected mean square difference between the raw data 
and their quantized version. 

(a) Find the optimal values Yi. i = 0, ±1, .... 
For the optimal quantizer Y, show that 

(b) E[Y] = E[X], so the mean square error quantizer preserves the input mean; 
(c) Var(Y) = Var(X) - E[(X - Y)2]. 

Solution (a) For any quantizer Y, upon conditioning on the value of Y, we obtain 

E[(X - Y)2] = L E[(X - Yi)2 lai < X s ai+1]P{ai < X s ai+d 
i 

Now, if we let 
I = i if ai < X s ai+ 1 

then 

and by Proposition 6.1, this quantity is minimized when 

Yi = E[Xll = i] 
= E[Xlai < X s ai+d 
= ri+l xfx(x) dx 

lai Fx(ai+1) - Fx(ai) 

Now, since the optimal quantizer is given by Y = E[XII], it follows that 

(b) E[Y] = E[X] 
(c) 

Var(X) = E[Var(Xll)] + Var(E[ XII]) 

= E[E[(X - Y)21I]] + Var(Y) 

= E[ (X - Y)2] + Var(Y) • 
It sometimes happens that the joint probability distribution of X and Y is not 

completely known; or if it is known, it is such that the calculation of E[YIX = x] 
is mathematically intractable. If, however, the means and variances of X and Y and 
the correlation of X and Y are known, then we can at least determine the best linear 
predictor of Y with respect to X. 

To obtain the best linear predictor of Y with respect to X, we need to choose a 
and b so as to minimize E[(Y - (a + bX))2]. Now, 

E[(Y - (a+ bX))2] = E[Y2 - 2aY - 2bXY + a2 + 2abX + b2X 2] 

:::: E[Y2] - 2aE[Y] - 2bE[XY] + a2 

+ 2abE[X] + b2 E[X2] 
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Taking partial derivatives, we obtain 

a 
aa E[(Y - a - bX)2] = -2E[Y] + 2a + 2bE[X] 

a 
ab E[(Y - a - bX)2] = -2E[XY] + 2aE[X] + 2bE[X2] 

Setting Equations (6.3) to 0 and solving for a and b yields the solutions 

b _ E[XY] - E[X]E[Y] _ Cov(X, Y) _ ay 
- E[X2] - (E[X])2 - a} - p ax 

a = E[Y] - bE[X] = E[Y] - payE[X] 
ax 

(6.3) 

(6.4) 

where p = Correlation(X, Y), a'f = Var(Y), and a} = Var(X). It is easy to ver
ify that the values of a and b from Equation (6.4) minimize E[(Y - a - bX)2]; 

thus, the best (in the sense of mean square error) linear predictor Y with respect 
to Xis pay 

/Ly+ -(X - /Lx) 
ax 

where /Ly = E[Y] and /Lx = E[X]. 
The mean square error of this predictor is given by 

= a'f + p2a'f - 2p2a'f 

= a'f(l - p 2) (6.5) 

We note from Equation (6.5) that if pis near +1 or -1, then the mean square error 
of the best linear predictor is near zero. • 

An example in which the conditional expectation of Y given Xis linear in X, and 
hence in which the best linear predictor of Y with respect to X is the best overall 
predictor, is when X and Y have a bivariate normal distribution. For, in that case, 

ay 
E[YIX = x] =/Ly + p-(x - /Lx) 

ax • 

7 Moment Generating Functions 
The moment generating function M(t) of the random variable Xis defined for all 
real values oft by 

if Xis discrete with mass function p(x) 

if Xis continuous with density f(x) 
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We call M (t) the moment generating function because all of the moments of X can 
be obtained by successively differentiating M(t) and then evaluating the result at 
t = 0. For example, 

(7.1) 

where we have assumed that the interchange of the differentiation and expectation 
operators is legitimate. That is, we have assumed that 

in the discrete case and 

in the continuous case. This assumption can almost always be justified. Hence, from 
Equation (7.1), evaluated at t = 0, we obtain 

Similarly, 

Thus, 

M'(O) = E[X] 

M" (t) = !!:_ M' (t) 
dt 

= !!:_E[XetX] 
dt 

= E [:/xetx)J 

= E[X2ex] 

M" (0) = E[X2] 

In general, the nth derivative of M(t) is given by 

implying that 

We now compute M(t) for some common distributions. 
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Binomial distribution with parameters n and p 

If Xis a binomial random variable with parameters n and p, then 

M(t) = E[etX] 

= te'k (~)pk(l - Pr-k 
k=O 

= t ( ~) (pe')k(l _ p)n-k 

k=O 

= (pe' + 1 - pr 

where the last equality follows from the binomial theorem. Differentiation yields 

M'(t) = n(pe' + 1 - p)n-1pe' 

Thus, 
E[X] = M' (0) = np 

Differentiating a second time yields 

M"(t) = n(n - l)(pe' + 1 - p)n-2 (pe1)2 + n(pe' + 1 - p)n-1pe' 

so 
E[X2] = M"(O) = n(n - 1)p2 + np 

The variance of X is given by 

Var(X) = E[X2] - (E[X])2 

= n(n - 1)p2 + np - n2p2 

=np(l - p) 

verifying the result obtained previously in the chapter. 

Poisson distribution with mean l. 

If Xis a Poisson random variable with parameter A., then 

Differentiation yields 

M(t) = E[~] 

= ~ etne-J..A.n 
L.,, n! 
n=O 

oo (A.e')n 
=e-J..1:--

n=O n! 
-J.. _>..e' =e t:'-

= exp{A.(e' - 1)} 

M' (t) = A.e' exp{A.(e' - 1)} 

M"(t) = (A.e')2 exp{A.(e' - 1)} + A.e' exp{A.(e' - 1)} 

• 
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Thus, 

E[X] = M'(O) = >.. 

E[X2] = M"(O) = >..2 + >.. 

Var(X) = E[X2] - (E[X])2 

=A. 

Hence, both the mean and the variance of the Poisson random variable equal >... • 

Exponential distribution with parameter l. 

= fooo ett>..e-J.x dx 

= >.. fooo e-() .. -t)x dx 

>.. 
=-- fort < >.. 

>.. - t 

We note from this derivation that for the exponential distribution, M(t) is defined 
only for values oft less than>... Differentiation of M(t) yields 

Hence, 

>.. 
M'(t)- --

- (A. - t)2' 

E[X] = M'(O) = ~· 
The variance of X is given by 

M" 2>.. 
(t) = (A. - t)3 

Var(X) = E[X2] - (E[X])2 

1 
= 

)..2 

Normal distribution 

• 

We first compute the moment generating function of a unit normal random variable 
with parameters 0 and 1. Letting Z be such a random variable, we have 

Mz(t) = E[e1z] 

1 loo tx -x2/2 dx =-- e e 
.j2ri -oo 

1 100 
{ (x2 - 2tx) I d = -- exp - x 

.j2ri -00 2 

= _1_ 100 exp {- (x - t)2 + ~1 dx 
.j2ri -oo 2 2 

= e'2;2_l_ 100 e-<x-t)2/2 dx 
.j2ri -oo 
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Hence, the moment generating function of the unit normal random variable Z is 
given by Mz(t) = rf' 12• To obtain the moment generating function of an arbitrary 
normal random variable, X = JL + a Z will have a normal distribution with param
eters JL and a 2 whenever Z is a unit normal random variable. Hence, the moment 
generating function of such a random variable is given by 

Mx(t) = E[etX] 

By differentiating, we obtain 

= E[ e'(µ+u Z)] 

= E[e'µetaZ] 

=etµ E[etuz] 

=etµ Mz(ta) 

= etµ e<tu)2 /2 

{ 
(12(2 } 

=exp 2 + JLt 

{ 
(12(2 } 

M'x(t) = (JL + ta2) exp T + JLt 

{ 
(12(2 } 

Mx(t) = (JL + ta2)2 exp T + JLt { 
a2t2 } + a 2 exp T + JLt 

Thus, 

E[X] = M'(O) = JL 

E[X2] = M"(O) = JL2 + a2 

implying that 

Var(X) = E[X2] - E([X])2 

= (12 • 
Tables 1 and 2 give the moment generating functions for some common discrete 

and continuous distributions. 
An important property of moment generating functions is that the moment gen

erating function of the sum of independent random variables equals the product of 
the individual moment generating functions. To prove this, suppose that X and Y are 
independent and have moment generating functions Mx(t) and My(t), respectively. 
Then Mx+y(t), the moment generating function of X + Y, is given by 

Mx+y(t) = E[et<X+Y>] 

= E[etXetY] 

= E[etX]E[etY] 

= Mx(t)My(t) 

where the next-to-last equality follows from Proposition 4.1, since X and Y are 
independent. 
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Table I Discrete Probability Distribution. 

Moment 
Probability mass generating 
function, p(x) function, M(t) Mean Variance 

Binomial with (~)r<l _ p)n-x (pet + 1 - p)n np np(l - p) 
parameters n, p; 
Ospsl x=O,l, ... ,n 

)...X 
exp{)...(et - 1)} Poi~onwith e-J.._ )... )... 

parameter l. > 0 x! 
x = 0,1,2, ... 

Geometric with p(l _ p)x-1 pet 1 1-p 
- P2 parameter 1 - (1 - p)et p 

Ospsl X= 1,2, ... 

[ r Negative (n - 1) r(l _ )n-r 
pet r r(l - p) 

-
binomial with 

r - 1 P P 1 - (1 - p)et p p2 

parameters r, p; 
Ospsl n = r, r + 1, ... 

Another important result is that the moment generating function uniquely deter
mines the distribution. That is, if Mx(t) exists and is finite in some region about t = 0, 
then the distribution of X is uniquely determined. For instance, if 

(1)10 Mx(t) = 2 (et + 1)10, 

then it follows from Table 1 that X is a binomial random variable with parameters 

10 and i· 
Suppose that the moment generating function of a random variable X is given by 
M(t) = e3Ce'-l). What is P{X = 0}? 

Solution We see from Table 1 that M(t) = e3Ce'-l) is the moment generating func
tion of a Poisson random variable with mean 3. Hence, by the one-to-one correspon
dence between moment generating functions and distribution functions, it follows 
that X must be a Poisson random variable with mean 3. Thus, P{X = O} = e-3• • 

Sums of independent binomial random variables 

If X and Y are independent binomial random variables with parameters (n, p) and 
(m, p ), respectively, what is the distribution of X + Y? 

Solution The moment generating function of X + Y is given by 

Mx+y(t) = Mx(t)My(t) =(pet + 1 - pr(pe' + 1 - p)m 

= (pe' + 1 - p)m+n 

However, (pe' + 1 - p)m+n is the moment generating function of a binomial ran
dom variable having parameters m + n and p. Thus, this must be the distribution 
ofX + Y. • 



(..) 
a> 
(..) 

Table 2 Continuous Probability Distribution. 

Uniform over (a, b) 

Exponential with 
parameter l > 0 

Gamma with parameters 
(s,l),l > 0 

Normal with parameters 
(µ,, a2) 

Probability density function,f(x) 

f(x) ~fr~ a 
a < x < b 

otherwise 

l).e-J..x x 2=: 0 
f(x) = o x < 0 

l ).e-Ax().xy-1 

f (x) = r(s) x 2=: 0 

0 x < 0 

1 f (x) = --e-<x-µ,)2 /2a2 ..ffiia -oo < x < oo 

Moment 
generating 

function, M(t) 

etb _ eta 

t(b - a) 

). 
--
/.. - t 

(1.. ~tr 
I a2t2 I exp µ,t + - 2-

~ 
0 

'Cl 
0 ..... 
:::t. 
0 

"' 
Mean Variance 

0 -tI1 
~ 

(b - a)2 
0 

a+ b ~ 
~ -- :::t. 2 12 0 
::s 

1 1 
-
/.. )..2 

s s 
-
). )..2 

µ, a2 
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Sums of independent Poisson random variables 

Calculate the distribution of X + Y when X and Y are independent Poisson random 
variables with means respectively A.1 and A.2. 

Solution 

Mx+y(t) = Mx(t)My(t) 

= exp{A.1(et - l)}exp{A.2(et - 1)} 

= exp{(A.1 + A.2)(e - 1)} 

Hence, X + Y is Poisson distributed with mean A.1 + A.2. 

Sums of independent normal random variables 

• 

Show that if X and Y are independent normal random variables with respective 
parameters (1.q,o'[) and (µ,2,af), then X + Y is normal with mean f.Ll + µ,2 and 
variance af + af. 
Solution 

Mx+y(t) = Mx(t)My(t) 

{ a2t2 } { a.2£2 } 
= exp + + f.L1 t exp T + µ,2t 

{ 
(a2 + a2)t2 } = exp 1 

2 
2 + (µ,1 + 1L2)t 

which is the moment generating function of a normal random variable with mean 
f.L1 + µ,2 and variance af + af. The desired result then follows because the moment 
generating function uniquely determines the distribution. • 

Compute the moment generating function of a chi-squared random variable with n 
degrees of freedom. 

Solution We can represent such a random variable as 

zi + ... + z~ 

where Zi. ... ,Zn are independent standard normal random variables. Let M(t) be 
its moment generating function. Then, by the preceding, 

where Z is a standard normal random variable. Now, 

E[etz2] = _1_ foo ex2 e-x212 dx 
..J2i J_oo 

= _l_ f 00 e-x2/2<r2 dx where a 2 = (1 - 2t)-1 
.j'Ii J_oo 

=O' 

= (1 - 2t)-112 
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where the next-to-last equality uses the fact that the normal density with mean 0 and 
variance a 2 integrates to 1. Therefore, 

M(t) = (1 - 2t)-nf2 • 
Moment generating function of the sum of a random number of random variables 

Let X1,X2 , ... be a sequence of independent and identically distributed random 
variables, and let N be a nonnegative, integer-valued random variable that is inde
pendent of the sequence X, i ;:::: 1. We want to compute the moment generating 
function of 

(In Example Sd, Y was interpreted as the amount of money spent in a store on a 
given day when both the amount spent by a customer and the number of customers 
are random variables.) 

To compute the moment generating function of Y, we first condition on N as 
follows: 

where 

Hence, 

Thus, 

E[e•+*x•} N=n] =+·+~x,} N=•] 
= +xp { t ~ x,}] 
= [Mx(t)]" 

Mx(t) = E[etX;] 

My(t) = E[(Mx(t))N] 

The moments of Y can now be obtained upon differentiation, as follows: 

So 

M~(t) = E[N(Mx(t))N-l Mx(t)] 

E[Y] = M~(O) 
= E[N(Mx(O))N-l Mx(O)] 

= E[NE[X]] 

= E[N]E[X] 

(7.2) 

verifying the result of Example Sd. (In this last set of equalities, we have used the 
fact that Mx(O) = E[eox] = 1.) 
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Also, 

M';,(t) = E[N(N - l)(Mx(t))N-2 (M~(t))2 + N(Mx(t))N-l M1(t)] 

so 

E[Y2] = M';,(0) 

= E[N(N - l)(E[X])2 + NE[X2]] 

= (E[X])2(E[N2] - E[N]) + E[N]E[X2] (7.3) 

= E[N](E[X2] - (E[X])2) + (E[X])2E[N2] 

= E[N]Var(X) + (E[X])2E[N2] 

Hence, from Equations (7.2) and (7.3), we have 

Var(Y) = E[N]Var(X) + (E[X])2(E[N2] - (E[N])2) 

= E[N]Var(X) + (E[X])2Var(N) • 
Let Y denote a uniform random variable on (0, 1), and suppose that conditional on 
Y = p, the random variable X has a binomial distribution with parameters n and p. 
In Example Sk, we showed that X is equally likely to take on any of the values 
0, 1, ... , n. Establish this result by using moment generating functions. 

Solution To compute the moment generating function of X, start by conditioning 
on the value of Y. Using the formula for the binomial moment generating function 
gives 

Now, Y is uniform on (0, 1), so, upon taking expectations, we obtain 

E[etX] =fol (pet + 1 - p)n dp 

1 e' 
= -r--1 r yndy (by the substitution y = pe1 + 1 - p) 

e - 11 
1 e'(n+l) - 1 

= n+l e1 -l 
1 t 2J .Jlt = --(1 + e + e + · · · + e ) 

n + 1 

Because the preceding is the moment generating function of a random variable that 
is equally likely to be any of the values 0, 1, ... , n, the desired result follows from the 
fact that the moment generating function of a random variable uniquely determines 
its distribution. • 

7.1 Joint Moment Generating Functions 

It is also possible to define the joint moment generating function of two or more 
random variables. This is done as follows: For any n random variables X1, ... ,Xn, 
the joint moment generating function, M(ti, ... , tn), is defined, for all real values of 
t1, ... ,tn,bY 
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The individual moment generating functions can be obtained from M(t1, ... , tn) by 
letting all but one of the t/s be 0. That is, 

Mx;(t) = E[etXi] = M(O, ... , 0, t, 0, ... , 0) 

where the t is in the ith place. 
It can be proven (although the proof is too advanced for this chapter) that the 

joint moment generating function M (t1, ... , tn) uniquely determines the joint dis
tribution of X1, ... , Xn. This result can then be used to prove that the n random 
variables X1, ... , Xn are independent if and only if 

For the proof in one direction, if the n random variables are independent, then 

M(ti, ... , tn) = E[e(t1X1+ · · · +tnXn)] 

= E[ et1 X1 ... etnXn] 

= E[et1X1] ... E[etnXn] by independence

= Mx1 (t1) · · · Mxn <tn) 

(7.4) 

For the proof in the other direction, if Equation (7.4) is satisfied, then the joint 
moment generating function M(t1, •.. , tn) is the same as the joint moment generating 
function of n independent random variables, the ith of which has the same distribu
tion as Xi. As the joint moment generating function uniquely determines the joint 
distribution, this must be the joint distribution; hence, the random variables are 
independent. 

Let X and Y be independent normal random variables, each with mean µ, and vari
ance a 2. Let us establish that X + Y and X - Y are independent by computing 
their joint moment generating function: 

E[ et(X + Y)+s(X- Y)] = E[ e<t+s)X +(t-s) Y] 

= E[ e<t+s)X ]E[ e<t-s) Y] 

= eJL(t+s)+a2 (t+d /2 eJL(t-s)+a2 (t-s)2 /2 

But we recognize the preceding as the joint moment generating function of the sum 
of a normal random variable with mean 2µ, and variance 2a2 and an independent 
normal random variable with mean 0 and variance 2a2. Because the joint moment 
generating function uniquely determines the joint distribution, it follows that X + Y 
and X - Y are independent normal random variables. • 

Suppose that the number of events that occur is a Poisson random variable with 
mean).. and that each event is independently counted with probability p. Show that 
the number of counted events and the number of uncounted events are independent 
Poisson random variables with respective means )..p and )..(1 - p). 

367 



368 

Properties of Expectation 

Solution Let X denote the total number of events, and let Xe denote the number of 
them that are counted. To compute the joint moment generating function of Xe, the 
number of events that are counted, and X - Xe, the number that are uncounted, 
start by conditioning on X to obtain 

E[ eXc+t(X-Xc) IX = n l = en E[ e<s-t)Xc IX = n l 
= e"'(pe-t + 1 - p)n 

= (pe + (1 - p)et)n 

which follows because, conditional on X = n, Xe is a binomial random variable with 
parameters n and p. Hence, 

Taking expectations of both sides of this equation yields 

Now, since Xis Poisson with mean).., it follows that E[etX] = eA<e'-l). Therefore, for 
any positive value a we see (by letting a = e') that E[aX] = eA<a-l). Thus, 

E[eXc+t(X-Xc)) = ~(pe'+(l-p)e'-1) 

= ~p(e"-1)~(1-p)(e'-1) 

As the preceding is the joint moment generating function of independent Poisson 
random variables with respective means )..p and )..(1 - p), the result is proven. • 

8 Additional Properties of Normal Random Variables 

8.1 The Multivariate Normal Distribution 

Let Z1, ... , Zn be a set of n independent unit normal random variables. If, for some 
constants aii• 1 5i: i s m, 1 s j s n, and f.Li, 1 5i: i 5i: m, 

X1 = auZ1 + · · · + alnZn + f.Ll 

X2 = az1Z1 + · · · + a2nZn + µ,z 

then the random variables X1, ... , Xm are said to have a multivariate normal distri
bution. 
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From the fact that the sum of independent normal random variables is itself a 
normal random variable, it follows that each Xi is a normal random variable with 
mean and variance given, respectively, by 

E[X;] =/.Li 
n 

Var(Xi) = Lai 
j=l 

Let us now consider 

M(ti, ... ,tm) = E[exp{tiX1 + · · · + tmXml] 

the joint moment generating function of X1, ... ,Xm. The first thing to note is that 
m 

since L: tiXi is itself a linear combination of the independent normal random vari
i=l 

ables Z1, ... , Zn, it is also normally distributed. Its mean and variance are 

and 

Var (t tixi) = Cov (t t;Xi, t tiJ4) 
1=1 1=1 J=l 

m m 

=LL t;tjCov(Xi,Xj) 
i=l j=l 

Now, if Y is a normal random variable with meanµ, and variance a 2, then 

E[ey] = My(t)lt=l = eµ,+u 2f2 

Thus, 

{ 
m 1 m m } 

M(t1, ... , tm) =exp E /if.Li + 2 E ~ liljCov(Xi,Xj) 

which shows that the joint distribution of X1, ... , Xm is completely determined from 
a knowledge of the values of E[Xi] and Cov(Xi,Xj),i,j = 1, ... ,m. 

It can be shown that when m = 2, the multivariate normal distribution reduces 
to the bivariate normal. 

Find P(X < Y) for bivariate normal random variables X and Y having parameters 

f.Lx = E[X], /.Ly = E[Y], a} = Var(X}, a'ff = Var(Y), p = Corr(X, Y) 

Solution Because X - Y is normal with mean 

E[X - Y] = f.Lx - /.Ly 

and variance 

Var(X - Y) = Var(X) + Var(-Y) + 2Cov(X, -Y) 
2 2 2 =ax + C7y - PC7xC7y 
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we obtain 

P{X < Y} = P{X - Y < O} 

= p { X - Y - (µx - µy) < 

J a} + aj - 2paxay 

~ ~ ( J af :'a;-i::pa,ay) • 
Suppose that the conditional distribution of X, given that 8 = e, is normal with 
mean(} and variance 1. Moreover, suppose that 8 itself is a normal random vari
able with meanµ and variance a 2. Find the conditional distribution of 8 given that 
X=x. 

Solution Rather than using and then simplifying Bayes's formula, we will solve this 
problem by first showing that X, 8 has a bivariate normal distribution. To do so, note 
that the joint density function of X, 8 can be written as 

fx,e(x, 0) = fx1e(xlO)fe(O) 

where fx1e(xlO) is a normal density with mean(} and variance 1. However, if we let Z 
be a standard normal random variable that is independent of 8, then the conditional 
distribution of Z + 8, given that 8 = e, is also normal with mean(} and variance 1. 
Consequently, the joint density of Z + 8, 8 is the same as that of X, 8. Because the 
former joint density is clearly bivariate normal (since Z + 8 and 8 are both linear 
combinations of the independent normal random variables Zand 8 ), it follows that 
X, 8 has a bivariate normal distribution. Now, 

and 

E[X] = E[Z + 8] = µ 

Var(X) = Var(Z + 8) = 1 + a 2 

p = Corr(X,8) 

= Corr(Z + 8, 8) 
Cov(Z + E>,8) 

= -,.;;;:;V'.;:::ar::;:( z:;;;=+=;;8~) V:"""a=r:;:;( 8;;::;:) 
C7 

= --;:::==:;: J1 + a2 

Because X, 8 has a bivariate normal distribution, the conditional distribution of 8, 
given that X = x, is normal with mean 

and variance 

E[81X = x] = E[8] + p Var(9 ) (x - E[X]) 
Var(X) 

(72 
= µ + (x - µ) 

1 + a 2 

Var(8IX = x) = Var(8)(1 - p2) 

(72 
= 

1 + a2 • 
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8.2 The joint Distribution of the Sample Mean and Sample 
Variance 

Let X1, ... , Xn be independent normal random variables, each with mean µ and vari
n 

ance u 2. Let X = L Xif n denote their sample mean. Since the sum of independent 
i=l 

normal random variables is also a normal random variable, it follows that X is a nor
mal random variable with (from Examples 2c and 4a) expected valueµ and variance 
u2 /n. 

Now, recall from Example 4e that 

Cov(X,Xi - X) = 0, i = 1, ... ,n (8.1) 

Also, note that since X, X1 - X, X2 - X, . .. , Xn - X are all linear combina
tions of the independent standard normals (Xi - µ) / u, i = 1, ... , n, it follows that 
X, Xi - X, i = 1, ... , n has a joint distribution that is multivariate normal. If we let 
Y be a normal random variable, with meanµ and variance u 2 /n, that is independent 
of the Xi, i = 1, ... , n, then Y, Xi - X, i = 1, ... , n also has a multivariate normal 
distribution and, indeed, because of Equation (8.1), has the same_expected values 
and covariances as the random variables X,Xi - X,i = 1, ... ,n. But since a mul
tivariate normal distribution is determined completely by its expected values and 
covariances,itfollowsthatY,Xi - X,i=l, ... ,nandX,Xi - X,i=l, ... ,nhave 
the same joint distribution, thus showing that X is independent of the sequence of 
deviations Xi - X, i = 1, ... , n. 

Since X is independent of the sequence of deviations Xi - X, i = 1, ... , n, it is 
n 

also independent of the sample variance S2 = L(Xi - X)2 /(n - 1). 
i=l 

Since we already know that X is normal with mean µ and variance u 2 /n, it 
remains only to determine the distribution of S2. To accomplish this, recall, from 
Example 4a, the algebraic identity 

n 

(n - l)S2 = L:cxi - X)2 

i=l 
n 

'"' 2 - 2 = L.)Xi - µ) - n(X - µ) 
i=l 

Upon dividing the preceding equation by u 2, we obtain 

Now, 

(n - l)S2 

2 + 
<T 

(x - µ) 2 = t (xi - µ) 2 

u I .jii, i=l u 
(8.2) 

is the sum of the squares of n independent standard normal random variables and 
so is a chi-squared random variable with n degrees of freedom. Hence, from Exam
ple 7i, its moment generating function is (1 - 2t)-nf2. Also, because 

(- )2 X-µ 
u I .jii, 
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is the square of a standard normal variable, it is a chi-squared random variable with 
1 degree of freedom, and so has moment generating function (1 - 2t)-112 • Now, we 
have seen previously in the chapter that the two random variables on the left side 
of Equation (8.2) are independent. Hence, as the moment generating function of 
the sum of independent random variables is equal to the product of their individual 
moment generating functions, we have 

or 

But as (1 - 21)-<n-l)/Z is the moment generating function of a chi-squared random 
variable with n - 1 degrees of freedom, we can conclude, since the moment gener
ating function uniquely determines the distribution of the random variable, that that 
is the distribution of (n - 1)s2 jc:r2 • 

Summing up, we have shown the following. 

If Xi. ... ,Xn are independent and identically distributed normal random variables 
with mean µ and variance a 2, then the sample mean X and the sample variance S2 

are independent. X is a normal random variable with mean µ and variance a 2 /n; 
(n - 1)S2 jc:r2 is a chi-squared random variable with n - 1 degrees of freedom. 

9 General Definition of Expectation 
Up to this point, we have defined expectations only for discrete and continuous ran
dom variables. However, there also exist random variables that are neither discrete 
nor continuous, and they, too, may possess an expectation. As an example of such a 
random variable, let X be a Bernoulli random variable with parameter p = ! , and 
let Y be a uniformly distributed random variable over the interval [O, 1 ]. Further
more, suppose that X and Y are independent, and define the new random variable 
Wby 

{X ifX=l 
W= Y ifXoF1 

Clearly, Wis neither a discrete (since its set of possible values, [O, 1], is uncountable) 
nor a continuous (since P{W = 1} =!)random variable. 

In order to define the expectation of an arbitrary random variable, we require 
the notion of a Stieltjes integral. For instance, for any function g, J: g(x) dx is defined 
by 

b n 1 g(x) dx = lim Lg(x;)(x; - x;_1) 

a i=l 

where the limit is taken over all a = xo < x1 < x2 · · · < Xn = b as n-+oo and where 
max {x; - x;-1)-+0. 

i=l, ... ,n 

For any distribution function F, we define the Stieltjes integral of the nonnega
tive function g over the interval [a, b] by 

b n 1 g(x) dF(x) = lim Lg(x;)[F(x;) - F(xi_1)] 

a i=l. 
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where, as before, the limit is taken over all a = xo < x1 < · · · < Xn = b as n-+oo and 
where .max (Xi - Xi-1)-+0. Further, we define the Stieltjes integral over the whole 

i=l,. .. ,n 
real line by I: g(x) dF(x) = al~ 00 lb g(x) dF(x) 

b-+ + 00 

Finally, if g is not a nonnegative function, we define g+ and g- by 

g+(x) = { g(x6 

g-(x) = {-g(x~ 

if g(x) ~ 0 
ifg(x) < 0 

if g(x) ~ 0 
ifg(x) < 0 

Because g(x) = g+(x) - g-(x) and g+ and g- are both nonnegative functions, it is 
natural to define £: g(x) dF(x) =I: g+(x) dF(x) - I: g-(x) dF(x)_ 

and we say that J~00 g(x) dF(x) exists as long as J~00 g+ (x) dF(x) and J~00 g-(x) dF(x) 
are not both equal to +oo. 

If X is an arbitrary random variable having cumulative distribution F, we define 
the expected value of X by 

E[X] = I: x dF(x) (9.1) 

It can be shown that if Xis a discrete random variable with mass functionp(x), then 

f 00 xdF(x) = L xp(x) 
-oo x:p(x)>O 

whereas if Xis a continuous random variable with density function/(x), then 

I: xdF(x) = £: xf (x) dx 

The reader should note that Equation (9.1) yields an intuitive definition of E[X]; 
consider the approximating sum 

n 

L:x;[F(x;) - F(x;_i)] 
i=l 

of E[X]. Because F(xi) - F(xi-1) is just the probability that X will be in the interval 
(x;_ 1, xi], the approximating sum multiplies the approximate value of X when it is in 
the interval (xi_1,xi] by the probability that it will be in that interval and then sums 
over all the intervals. Clearly, as these intervals get smaller and smaller in length, we 
obtain the "expected value" of X. 

Stieltjes integrals are mainly of theoretical interest because they yield a compact 
way of defining and dealing with the properties of expectation. For instance, the 
use of Stieltjes integrals avoids the necessity of having to give separate statements 
and proofs of theorems for the continuous and the discrete cases. However, their 
properties are very much the same as those of ordinary integrals, and all of the proofs 
presented in this chapter can easily be translated into proofs in the general case. 
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Summary 

If X and Y have a joint probability mass function p(x, y), 
then 

E[g(X, Y)] = L Lg(x,y)p(x,y) 
y x 

whereas if they have a joint density function f (x, y ), then 

E[g(X, Y)] = £:1: g(x,y)f(x,y)dxdy 

A consequence of the preceding equations is that 

E[X + Y] = E[X] + E[Y] 

which generalizes to 

The covariance between random variables X and Y is 
given by 

Cov(X, Y) = E[(X - E[X])(Y - E[Y])] 

= E[XY] - E[X]E[Y] 

A useful identity is 

is the conditional probability density of X given that 
Y = y. Conditional expectations, which are similar to 
ordinary expectations except that all probabilities are now 
computed conditional on the event that Y = y, satisfy all 
the properties of ordinary expectations. 

Let E[XIY] denote that function of Y whose value at 
Y = y is E[XIY = y]. A very useful identity is 

E[X] = E(E[XIY]] 

In the case of discrete random variables, this equation 
reduces to the identity 

E[X]= LE[XIY=y]P{Y=y} 
y 

and, in the continuous case, to 

E[X] = L: E[XIY = y]fy(y)dy 

The preceding equations can often be applied to obtain 
E[X] by first "conditioning" on the value of some other 
random variable Y. In addition, since, for any event A, 
P(A) = E[IA], where IA is 1 if A occurs and is 0 otherwise, 
we can use the same equations to compute probabilities. 

The conditional variance of X, given that Y = y, is 
defined by 

Var(XJY = y) = E[(X - E[XIY = y])2 JY = y] 

Let Var(XJY) be that function of Y whose value at Y = y 
When n = m and Yi = Xi, i = 1, ... , n, the preceding is Var(XI Y = y). The following is known as the conditional 
formula gives variance formula: 

Var ( t, X;) : t, Var(X1) + 2 ~<t= Cov(X;, Y;) 

The correlation between X and Y, denoted by p(X, Y), is 
defined by 

X y _ Cov(X, Y) 
p( ' ) - J\lar(X)Yar(Y) 

If X and Y are jointly discrete random variables, then the 
conditional expected value of X, given that Y = y, is 
defined by 

E[XIY = y] = LxP{X = xlY = y] 
x 

If X and Y are jointly continuous random variables, then 

where 

E(XIY =y] = 1:xfx1Y(xJy) 

f(x,y) 
fx1Y(xly) = fy(y) 

Var(X) = E[Var(XJY)] + Var(E[XJY]) 

Suppose that the random variable Xis to be observed and, 
on the basis of its value, one must then predict the value of 
the random variable Y. In such a situation, it turns out that 
among all predictors, E[YIX] has the smallest expectation 
of the square of the difference between it and Y. 

The moment generating function of the random vari
able X is defined by 

M(t) = E[e1x] 

The moments of X can be obtained by successively differ
entiating M(t) and then evaluating the resulting quantity 
at t = 0. Specifically, we have 

E[Xn] = :; M(t)I n = 1,2, ... 
t=O 

1\vo useful results concerning moment generating func
tions are, first, that the moment generating function 
uniquely determines the distribution function of the 
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random variable and, second, that the moment generat
ing function of the sum of independent random variables 
is equal to the product of their moment generating func
tions. These results lead to simple proofs that the sum of 
independent normal (Poisson, gamma) random variables 
remains a normal (Poisson, gamma) random variable. 

If X1, ... , Xm are all linear combinations of a finite 
set of independent standard normal random variables, 
then they are said to have a multivariate normal distribu
tion. Their joint distribution is specified by the values of 
E[Xi],Cov(Xi,Xj),i,j = 1, ... ,m. 

If Xi. ... , Xn are independent and identically dis
tributed normal random variables, then their sample mean 

Problems 

I. A player throws a fair die and simultaneously flips a fair 
coin. If the coin lands heads, then she wins twice, and if 
tails, then she wins one-half of the value that appears on 
the die. Determine her expected winnings. 

2. The game of Clue involves 6 suspects, 6 weapons, and 9 
rooms. One of each is randomly chosen and the object of 
the game is to guess the chosen three. 

(a) How many solutions are possible? 
In one version of the game, the selection is made and then 
each of the players is randomly given three of the remain
ing cards. Let S, W, and R be, respectively, the numbers 
of suspects, weapons, and rooms in the set of three cards 
given to a specified player. Also, let X denote the number 
of solutions that are possible after that player observes his 
or her three cards. 
(b) Express X in terms of S, W, and R. 
(c) Find E[X]. 

3. Gambles are independent, and each one results in the 
player being equally likely to win or lose 1 unit. Let 
W denote the net winnings of a gambler whose strat
egy is to stop gambling immediately after his first win. 
Find 

(a) P{W > O} 
(b) P{W < O} 
(c) E[W] 

4. If X and Y have joint density function 

fx,y(x,y) = { ~?· 
find 

(a) E[XY] 
(b) E[X] 
(c) E[Y] 

if 0 < y < 1, 0 < x < y 
otherwise 

5. The county hospital is located at the center of a square 
whose sides are 3 miles wide. If an accident occurs within 

- ~xi 
X=~-

i=l n 

and their sample variance 

s2 = ~ (Xi - X)2 
~ n -1 
i=l 

are independent. The sample mean X is a normal random 
variable with meanµ and variance cr2 /n; the random vari
able (n - l)s2 /cr2 is a chi-squared random variable with 
n - 1 degrees of freedom. 

this square, then the hospital sends out an ambulance. The 
road network is rectangular, so the travel distance from 
the hospital, whose coordinates are (O,_O), to the point 
(x, y) is lxl + IYI· If an accident occurs at a point that is uni
formly distributed in the square, find the expected travel 
distance of the ambulance. 

6. A fair die is rolled 10 times. Calculate the expected sum 
of the 10 rolls. 

7. Suppose that A and B each randomly and indepen
dently choose 3 of 10 objects. Find the expected number 
of objects 

(a) chosen by both A and B; 
(b) not chosen by either A or B; 
(c) chosen by exactly one of A and B. 

8. N people arrive separately to a professional dinner. 
Upon arrival, each person looks to see if he or she has 
any friends among those present. That person then sits 
either at the table of a friend or at an unoccupied table 
if none of those present is a friend. Assuming that each 

of the ( ~ ) pairs of people is, independently, a pair of 

friends with probability p, find the expected number of 
occupied tables. 
Hint: Let Xi equal 1 or 0, depending on whether the ith 
arrival sits at a previously unoccupied table. 

9. A total of n balls, numbered 1 through n, are put into n 
urns, also numbered 1 through n in such a way that ball i is 
equally likely to go into any of the urns 1, 2, ... , i. Find 

(a) the expected number of urns that are empty; 
(b) the probability that none of the urns is empty. 

Io. Consider 3 trials, each having the same probability of 
success. Let X denote the total number of successes in 
these trials. If E[X] = 1.8, what is 

(a) the largest possible value of P{X = 3}? 
(b) the smallest possible value of P.{X = 3}? 
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In both cases, construct a probability scenario that results 
in P{X = 3} having the stated value. 
Hint: For part (b), you might start by letting Ube a uni
form random variable on (0, 1) and then defining the trials 
in terms of the value of U. 

11. Consider n independent flips of a coin having proba
bility p of landing on heads. Say that a changeover occurs 
whenever an outcome differs from the one preceding it. 
For instance, if n = 5 and the outcome is HHTHT, then 
there are 3 changeovers. Find the expected number of 
changeovers. 
Hint: Express the number of changeovers as the sum of 
n - 1 Bernoulli random variables. 

12. A group of n men and n women is lined up at random. 

(a) Find the expected number of men who have a woman 
next to them. 
(b) Repeat part (a), but now assuming that the group is 
randomly seated at a round table. 

13. A set of 1000 cards numbered 1 through 1000 is ran
domly distributed among 1000 people with each receiving 
one card. Compute the expected number of cards that 
are given to people whose age matches the number on 
the card. 

14. An urn has m black balls. At each stage, a black ball 
is removed and a new ball that is black with probability p 
and white with probability 1 - p is put in its place. Find 
the expected number of stages needed until there are no 
more black balls in the urn. 
NOTE: The preceding has possible applications to under
standing the AIDS disease. Part of the body's immune 
system consists of a certain class of cells known as T
cells. There are 2 types of T-cells, called CD4 and CD8. 
Now, while the total number of T-cells in AIDS sufferers 
is (at least in the early stages of the disease) the same 
as that in healthy individuals, it has recently been dis
covered that the mix of CD4 and CD8 T-cells is differ
ent. Roughly 60 percent of the T-cells of a healthy per
son are of the CD4 type, whereas the percentage of the 
T-cells that are of CD4 type appears to decrease continu
ally in AIDS sufferers. A recent model proposes that the 
HIV virus (the virus that causes AIDS) attacks CD4 cells 
and that the body's mechanism for replacing killed T-cells 
does not differentiate between whether the killed T-cell 
was CD4 or CD8. Instead, it just produces a new T-cell 
that is CD4 with probability .6 and CD8 with probability 
.4. However, although this would seem to be a very effi
cient way of replacing killed T-cells when each one killed 
is equally likely to be any of the body's T-cells (and thus 
has probability .6 of being CD4), it has dangerous con
sequences when facing a virus that targets only the CD4 
T-cells. 

IS. In Example 2h, say that i and j, i =F j, form a matched 
pair if i chooses the hat belonging to j and j chooses the 

hat belonging to i. Find the expected number of matched 
pairs. 

16. Let Z be a standard normal random variable, and, for 
a fixed x, set 

x-{z ifZ > x 
- 0 otherwise 

Show that E[X] = ~e-x7-/2 • 

17. A deck of n cards numbered 1 through n is thoroughly 
shuffled so that all possible n! orderings can be assumed 
to be equally likely. Suppose you are to make n guesses 
sequentially, where the ith one is a guess of the card in 
position i. Let N denote the number of correct guesses. 

(a) If you are not given any information about your earlier 
guesses, show that for any strategy, E[N] = 1. 
(b) Suppose that after each guess you are shown the card 
that was in the position in question. What do you think is 
the best strategy? Show that under this strategy, 

1 1 
E[N] = ;i + n _ 1 + · · · + 1 

RJ r ! dx = log n 11 x 

(c) Suppose that you are told after each guess whether you 
are right or wrong. In this case, it can be shown that the 
strategy that maximizes E[N] is one that keeps on guess
ing the same card until you are told you are correct and 
then changes to a new card. For this strategy, show that 

1 1 1 
E[N] = 1 + - + - + · · · + -

2! 3! n! 
RJ e - 1 

Hint: For all parts, express N as the sum of indicator (that 
is, Bernoulli) random variables. 

18. Cards from an ordinary deck of 52 playing cards are 
turned face up one at a time. If the 1st card is an ace, or the 
2nd a deuce, or the 3rd a three, or ... , or the 13th a king, or 
the 14 an ace, and so on, we say that a match occurs. Note 
that we do not require that the (13n + 1) card be any par
ticular ace for a match to occur but only that it be an ace. 
Compute the expected number of matches that occur. 

19. A certain region is inhabited by r distinct types of a 
certain species of insect. Each insect caught will, indepen
dently of the types of the previous catches, be of type i with 
probability r 

Pi,i=1, ... ,r LPi=1 
1 

(a) Compute the mean number of insects that are caught 
before the first type 1 catch. 
(b) Compute the mean number of types of insects that are 
caught before the first type 1 catch. 
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20. In an urn containing n balls, the ith ball has weight 
W(i), i = 1, ... , n. The balls are removed without replace
ment, one at a time, according to the following rule: At 
each selection, the probability that a given ball in the urn 
is chosen is equal to its weight divided by the sum of the 
weights remaining in the urn. For instance, if at some time 
ii, ... , i, is the set of balls remaining in the urn, then the 

next selection will be ii with probability W(ij) / t W(ik), 
k=l 

j = 1, ... , r. Compute the expected number of balls that 
are withdrawn before ball number 1 is removed. 

21. For a group of 100 people, compute 

(a) the expected number of days of the year that are birth
days of exactly 3 people; 
(b) the expected number of distinct birthdays. 

22. How many times would you expect to roll a fair die 
before all 6 sides appeared at least once? 

23. Urn 1 contains S white and 6 black balls, while urn 2 
contains 8 white and 10 black balls. Two balls are randomly 
selected from urn 1 and are put into urn 2. If 3 balls are 
then randomly selected from urn 2, compute the expected 
number of white balls in the trio. 
Hint: Let Xi = 1 if the ith white ball initially in um 1 is 
one of the three selected, and let Xi = 0 otherwise. Simi
larly, let Yi = 1 if the ith white ball from um 2 is one of the 
three selected, and let Yi = 0 otherwise. The number of 

5 8 
white balls in the trio can now be written as L Xi + L Yi. 

1 1 

24. A bottle initially contains m large pills and n small pills. 
Each day, a patient randomly chooses one of the pills. If a 
small pill is chosen, then that pill is eaten. If a large pill is 
chosen, then the pill is broken in two; one part is returned 
to the bottle (and is now considered a small pill) and the 
other part is then eaten. 

(a) Let X denote the number of small pills in the bottle 
after the last large pill has been chosen and its smaller half 
returned. Find E[X]. 
Hint: Define n + m indicator variables, one for each of the 
small pills initially present and one for each of the m small 
pills created when a large one is split in two. Now use the 
argument of Example 2m. 

(b) Let Y denote the day on which the last large pill is cho
sen. Find E[Y]. 
Hint: What is the relationship between X and Y? 

25. Let X1, Xz, ... be a sequence of independent and iden
tically distributed continuous random variables. Let N ~ 2 
be such that 

That is, N is the point at which the sequence stops decreas
ing. Show that E[N] = e. 
Hint: First find P{N ~ n}. 

26. If X1, X2, ... , Xn are independent and identically dis
tributed random variables having uniform distributions 
over (0, 1), find 

(a) E[max(X1, ... ,Xn)]; 
(b) E[min(X1, ... ,Xn)]. 

* 27. If 101 items are distributed among 10 boxes, then at 
least one of the boxes must contain more than 10 items. 
Use the probabilistic method to prove this result. 

*28. The k-of-r-out-of-n circular reliability system, k s r s 
n, consists of n components that are arranged in a circu
lar fashion. Each component is either functional or failed, 
and the system functions if there is no block of r con
secutive components of which at least k are failed. Show 
that there is no way to arrange 47 components, 8 of which 
are failed, to make a functional 3-of-12-out-of-47 circular 
system. 

*29. There are 4 different types of coupons, the first 2 of 
which comprise one group and the second.2 another group. 
Each new coupon obtained is type i with probability Pi. 
where Pl = pz = l/8,p3 = p4 = 3/8. Find the expected 
number of coupons that one must obtain to have at least 
one of 

(a) all 4 types; 
(b) all the types of the first group; 
(c) all the types of the second group; 
( d) all the types of either group. 

30. If X and Y are independent and identically distributed 
with mean µ, and variance u 2, find 

31. In Problem 6, calculate the variance of the sum of the 
rolls. 

32. In Problem 9, compute the variance of the number of 
empty urns. 

33. If E[X] = 1 and Var(X) = S, find 

(a) E[(2 + X)2]; 

(b) Var(4 + 3X). 

34. If 10 married couples are randomly seated at a round 
table, compute (a) the expected number and (b) the vari
ance of the number of wives who are seated next to their 
husbands. 

35. Cards from an ordinary deck are turned face up one at 
a time. Compute the expected number of cards that need 
to be turned face up in order to obtain 

(a) 2 aces; 
(b) S spades; 
(c) all 13 hearts. 
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36. Let X be the number of 1 's and Y the number of 2's 
that occur inn rolls of a fair die. Compute Cov(X, Y). 

37. A die is rolled twice. Let X equal the sum of the out
comes, and let Y equal the first outcome minus the second. 
Compute Cov(X, Y). 

38. The random variables X and Y have a joint density 
function given by 

!( ) {2e-2x/x O:Sx<oo,Osysx 
x,y = 0 otherwise 

Compute Cov(X, Y). 

39. Let Xi. ... be independent with common mean µ, and 
common variance a 2, and set Yn = Xn + Xn+l + Xn+2· 
For j 2: 0, find Cov(Yn, Yn+j). 

40. The joint density function of X and Y is given by 

1 
f(x,y) = -e-(y+x/y), x > O,y > 0 

y 

Find E[X), E[Y], and show that Cov(X, Y) = 1. 

41. A pond contains 100 fish, of which 30 are carp. If 20 
fish are caught, what are the mean and variance of the 
number of carp among the 20? What assumptions are you 
making? 

42. A group of 20 people consisting of 10 men and 10 
women is randomly arranged into 10 pairs of 2 each. Com
pute the expectation and variance of the number of pairs 
that consist of a man and a woman. Now suppose the 20 
people consist of 10 married couples. Compute the mean 
and variance of the number of married couples that are 
paired together. 

43. Let Xi.X2, ... ,Xn be independent random variables 
having an unknown continuous distribution function F, 
and let Yi. Y2, ... , Y m be independent random variables 
having an unknown continuous distribution function G. 
Now order those n + m variables, and let 

l 1 if the ith smallest of the n + m 
Ii = variables is from the X sample 

0 otherwise 

n+m 
The random variable R = I: iii is the sum of the ranks 

i=l 
of the X sample and is the basis of a standard statisti-
cal procedure (called the Wilcoxon sum-of-ranks test) for 
testing whether F and G are identical distributions. This 
test accepts the hypothesis that F = G when R is neither 
too large nor too small. Assuming that the hypothesis of 
equality is in fact correct, compute the mean and variance 
ofR. 
Hint: Use the results of Example 3e. 

44, Between two distinct methods for manufacturing cer
tain goods, the quality of goods produced by method i is 
a continuous random variable having distribution Fi, i = 
1, 2. Suppose that n goods are produced by method 1 and 
m by method 2. Rank the n + m goods according to qual
ity, and let 

l 1 if the jth best was produced from 
Xj = method 1 

2 otherwise 

For the vector Xi.X2, ... ,Xn+m. which consists of n l's 
and m 2's, let R denote the number of runs of 1. For 
instance, if n = 5, m = 2, and X = 1, 2, 1, 1, 1, 1, 2, then 
R = 2. If F1 = F2 (that is, ifthe two methods produce iden
tically distributed goods), what are the mean and variance 
ofR? 

45. If Xi.X2,X3, and X4 are (pairwise) uncorrelated ran
dom variables, each having mean 0 and variance 1, com
pute the correlations of 

(a) X1 + X2 and X2 + X3; 
(b) X1 + X2 and X3 + X4. 

46. Consider the following dice game, as played at a cer
tain gambling casino: Players 1 and 2 roll a pair of dice in 
turn. The bank then rolls the dice to determine the out
come according to the following rule: Player i, i = 1, 2, 
wins if his roll is strictly greater than the bank's. For i = 
1,2, let 

l· _ { 1 if i wins 
1 - 0 otherwise 

and show that Ii and ]z are positively correlated. Explain 
why this result was to be expected. 

4 7. Consider a graph having n vertices labeled 1, 2, ... , n, 

and suppose that, between each of the ( ~) pairs of distinct 

vertices, an edge is independently present with probability 
p. The degree of vertex i, designated as Di, is the number 
of edges that have vertex i as one of their vertices. 

(a) What is the distribution of Di? 
(b) Find p(Di,Dj), the correlation between D; and Dj. 

48. A fair die is successively rolled. Let X and Y denote, 
respectively, the number of rolls necessary to obtain a 6 
and a5. Find 

(a) E[X]; 
(b) E[XIY = 1); 
(c) E[XIY = 5). 

49. There are two misshapen coins in a box; their prob
abilities for landing on heads when they are flipped are, 
respectively, .4 and .7. One of the coins is to be ran
domly chosen and flipped 10 times. Given that two of the 
first three flips landed on heads, what is the conditional 
expected number of heads in the 10 flips? 
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SO. The joint density of X and Y is given by 

e-X/Ye-Y 
f(x,y) = , 0 < x < oo, 0 < y < oo 

. y 
Compute E[X2 JY = y]. 

SI. The joint density of X and Y is given by 

e-Y 
f(x,y) = -, 0 < x < y, 0 < y < oo 

y 

Compute E[X3 JY = y]. 

S2. A population is made up of r disjoint subgroups. Let 
Pi denote the proportion of the population that is in sub
group i, i = 1, ... , r. If the average weight of the members 
of subgroup i is Wi, i = 1, ... , r, what is the average weight 
of the members of the population? 

S3. A prisoner is trapped in a cell containing 3 doors. 
The first door leads to a tunnel that returns him to his 
cell after 2 days' travel. The second leads to a tunnel 
that returns him to his cell after 4 days' travel. The 
third door leads to freedom after 1 day of travel. If it is 
assumed that the prisoner will always select doors 1, 2, 
and 3 with respective probabilities .5, .3, and .2, what is 
the expected number of days until the prisoner reaches 
freedom? 

S4. Consider the following dice game: A pair of dice is 
rolled. If the sum is 7, then the game ends and you win 0. 
If the sum is not 7, then you have the option of either stop
ping the game and receiving an amount equal to that sum 
or starting over again. For each value of i, i = 2, ... , 12, find 
your expected return if you employ the strategy of stop
ping the first time that a value at least as large as i appears. 
What value of i leads to the largest expected return? 
Hint: Let Xi denote the return when you use the critical 
value i. To compute E[Xi], condition on the initial sum. 

SS. Ten hunters are waiting for ducks to fly by. When a 
flock of ducks flies overhead, the hunters fire at the same 
time, but each chooses his target at random, independently 
of the others. If each hunter independently hits his target 
with probability .6, compute the expected number of ducks 
that are hit. Assume that the number of ducks in a flock is 
a Poisson random variable with mean 6. 

S6. The number of people who enter an elevator on the 
ground floor is a Poisson random variable with mean 10. 
If there are N floors above the ground floor, and if each 
person is equally likely to get off at any one of the N 
floors, independently of where the others get off, compute 
the expected number of stops that the elevator will make 
before discharging all of its passengers. 

S7. Suppose that the expected number of accidents per 
week at an industrial plant is 5. Suppose also that the num
bers of workers injured in each accident are independent 
random variables with a common mean of 2.5. If the num
ber of workers injured in each accident is independent of 

the number of accidents that occur, compute the expected 
number of workers injured in a week. 

SI. A coin having probability p of corning up heads 
is continually flipped until both heads and tails have 
appeared. Fmd 

(a) the expected number of flips; 
(b) the probability that the last flip lands on heads. 

S9. There are n + 1 participants in a game. Each person 
independently is a winner with probability p. The winners 
share a total prize of 1 unit. (For instance, if 4 people win, 
then each of them receives ! , whereas if there are no win
ners, then none of the participants receives anything.) Let 
A denote a specified one of the players, and let X denote 
the amount that is received by A. 

(a) Compute the expected total prize shared by the 
players. 

1 - (1 - p)n+l 
(b) Argue that E[X] = 1 . 

n+ -
(c) Compute E[X] by conditioning on whether A is a win-
ner, and conclude that 

1 (1 )n+l 
E[(l + B)-1] = - - p 

(n + l)p 

when B is a binomial random variable with parameters n 
andp. 

60. Each of m + 2 players pays 1 unit to a kitty in order 
to play the following game: A fair coin is to be flipped suc
cessively n times, where n is an odd number, and the suc
cessive outcomes are noted. Before the n flips, each player 
writes down a prediction. of the outcomes. For instance, if 
n = 3, then a player might write down (H, H, n, which 
means that he or she predicts that the first flip will land on 
heads, the second on heads, and the third on tails. After 
the coins are flipped, the players count their total number 
of correct predictions. Thus, if the actual outcomes are all 
heads, then the player who wrote (H, H, T} would have 2 
correct predictions. The total kitty of m + 2 is then evenly 
split up among those players having the largest number of 
correct predictions. 

Since each of the coin flips is equally likely to land on 
either heads or tails, m of the players have decided to 
make their predictions in a totally random fashion. Specif
ically, they will each flip one of their own fair coins n 
times and then use the result as their prediction. How
ever, the final 2 of the players have formed a syndicate 
and will use the following strategy: One of them will make 
predictions in the same random fashion as the other m 
players, but the other one will then predict exactly the 
opposite of the first. That is, when the randomizing mem
ber of the syndicate predicts an H, the other member pre
dicts a T. For instance, if the randomizing member of the 
syndicate predicts (H, H, T), then the other one predicts 
(T, T,H). 
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(a) Argue that exactly one of the syndicate members will Use part (a) to conclude that 
have more than n/2 correct predictions. (Remember, n is 
odd.) 
(b) Let X denote the number of them nonsyndicate play
ers who have more than n/2 correct predictions. What is 
the distribution of X? 
( c) With X as defined in part (b }, argue that 

E[payoff to the syndicate] = (m + 2) 

xE[-1 ] x + 1 

(d) Use part (c) of Problem S9 to conclude that 

E[payoff to the syndicate] = -2(_m_+_2_> 
m + 1 

X [1- (~)m+1J 

and explicitly compute this number when m = 1, 2, and 3. 
Because it can be shown that 

1 - - > 2 2(m + 2) [ (l)m+l] 
m + 1 2 

it follows that the syndicate's strategy always gives it a pos
itive expected profit. 

61. Let Xi. ... be independent random variables with the 
common distribution function F, and suppose they are 
independent of N, a geometric random variable with 
parameter p. Let M = max(X1, ... ,XN). 

(a) Find P{M :5 x} by conditioning on N. 
(b) Find P{M :s; xtN = l}. 
(c) Find P{M :5 xlN > l}. 
(d) Use (b} and (c) to rederive the probability you found 
in (a). 

62. Let Ui. U2, . .. be a sequence of independent uniform 
(0, 1) random variables. In Example Si, we showed that for 
0 :5 x :5 l,E[N(x)] = eX, where 

N(x) =min In: t Ui > x} 
1=1 

This problem gives another approach to establishing that 
result. 

(a) Show by induction on n that for 0 < x :s; 1 and all n 2: 0, 

x" 
P{N(x) 2: n + 1} = -

n! 

E[N(x)] = tf 

63. An urn contains 30 balls, of which 10 are red and 8 are 
blue. From this um, 12 balls are randomly withdrawn. Let 
X denote the number of red and Y the number of blue 
balls that are withdrawn. Find Cov(X, Y) 

(a) by defining appropriate indicator (that is, Bernoulli} 
random variables 

10 8 

Xi, Yi such that X = LXi, Y = LYi 
i=l j=l 

(b) by conditioning (on either X or Y) to determine 
E[XY]. 

64. '!Ype i light bulbs function for a random amount of 
time having mean /Li and standard deviation Uj, i = 1, 2. 
A light bulb randomly chosen from a bin of bulbs is a type 
1 bulb with probability p and a type 2 bulb with probability 
1 - p. Let X denote the lifetime of this bulb. Find 

(a) E[X]; 
(b) Var(X). 

65. The number of winter storms in a good year is a Pois
son random variable with mean 3, whereas the number in a 
bad year is a Poisson random variable with mean 5. If next 
year will be a good year with probability .4 or a bad year 
with probability .6, find the expected value and variance of 
the number of storms that will occur. 

66. In Example Sc, compute the variance of the length of 
time until the miner reaches safety. 

67. Consider a gambler who, at each gamble, either wins 
or loses her bet with respective probabilities p and 1 - p. 
A popular gambling system known as the Kelley strategy 
is to always bet the fraction 2p - 1 of your current fortune 
whenp > !·Compute the expected fortune after n gam
bles of a gambler who starts with x units and employs the 
Kelley strategy. 

68. The number of accidents that a person has in a given 
year is a Poisson random variable with mean A.. However, 
suppose that the value of A. changes from person to person, 
being equal to 2 for 60 percent of the population and 3 for 
the other 40 percent. If a person is chosen at random, what 
is the probability that he will have (a) 0 accidents and (b} 
exactly 3 accidents in a certain year? What is the condi
tional probability that he will have 3 accidents in a given 
year, given that he had no accidents the preceding year? 

Hint: First condition on u1 and then use the induction 69. Repeat Problem 68 when the proportion of the popu-
hypothesis. lation having a value of A. less than x is equal to 1 - e-x. 
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70. Consider an um containing a large number of coins, 
and suppose that each of the coins has some probability p 
of turning up heads when it is flipped. However, this value 
of p varies from coin to coin. Suppose that the composi
tion of the um is such that if a coin is selected at random 
from it, then the p-value of the coin can be regarded as 
being the value of a random variable that is uniformly 
distributed over [O, l]. If a coin is selected at random from 
the um and flipped twice, compute the probability that 
(a) the first flip results in a head; 
(b) both flips result in heads. 

71. In Problem 70, suppose that the coin is tossed n times. 
Let X denote the number of heads that occur. Show that 

. 1 
P{X= z} = n + 1 

Hint: Make use of the fact that 

i = 0, 1, ... ,n 

!al . .a-1 1 b-1 dx (a - l)!(b - 1)! 
..i, ( - x) = ------

o (a + b - 1)! 

when a and b are positive integers. 

72. Suppose that in Problem 70, we continue to flip the 
coin until a head appears. Let N denote the number of flips 
needed. Fmd 
(a) P{N ~ i},i ~ 1; 
(b) P{N = i}; 
(c) E[N]. 

73. In Example 6b, let S denote the signal sent and R the 
signal received. 
(a) Compute E[R]. 
(b) Compute Var(R). 
(c) Is R normally distributed? 
(d) Compute Cov(R, S). 

7 4. In Example 6c, suppose that Xis uniformly distributed 
over (0, 1). If the discretized regions are determined by 
ao = O,a1 =!,and a2 = 1, calculate the optimal quantizer 
Y and compute E[ (X - Y)2]. 

75. The moment generating function of X is given by 
Mx(t) = exp{2e' - 2} and that of Y by My(t) = 

( ie' + i) 10. If X and Y are independent, what are 

(a)P{X + Y=2}? 
(b) P{XY = 0}? 
(c) E[XY]? 

76. Let X be the value of the first die and Y the sum of 
the values when two dice are rolled. Compute the joint 
moment generating function of X and Y. 

77. The joint density of X and Y is given by 

f(x,y) = ) 27/-Ye-<x-y)212 0 < y < oo, 

-oo < x < 00 

(a) Compute the joint moment generating function of X 
and Y. 
(b) Compute the individual moment generating functions. 

78. 1\vo envelopes, each containing a check, are placed in 
front of you. You are to choose one of the envelopes, open 
it, and see the amount of the check. At this point, either 
you can accept that amount or you can exchange it for the 
check in the unopened envelope. What should you do? Is 
it possible to devise a strategy that does better than just 
accepting the first envelope? 

Let A and B,A < B, denote the (unknown) amounts of 
the checks, and note that the strategy that randomly selects 
an envelope and always accepts its check has an expected 
return of (A + B)/2. Consider the following strategy: Let 
F(·) be any strictly increasing (that is, continuous) distribu
tion function. Choose an envelope randomly and open it. 
If the discovered check has the value x, then accept it with 
probability F(x) and exchange it with probability 1 - F(x). 

(a) Show that if you employ the latter strategy, then your 
expected return is greater than (A + B) /2. 
Hint: Condition on whether the first envelope has the 
value A or B. 

Now consider the strategy that fixes a value x and then 
accepts the first check if its value is greater than x and 
exchanges it otherwise. 
(b) Show that for any x, the expected return under 
the x-strategy is always at least (A + B)/2 and 
that it is strictly larger than (A + B) /2 if x lies between 
AandB. 
(c) Let X be a continuous random variable on the whole 
line, and consider the following strategy: Generate the 
value of X, and if X = x, then employ the x-strategy of 
part (b ). Show that the expected return under this strategy 
is greater than (A + B) /2. 

79. Successive weekly sales, in units of $1, 000, have a 
bivariate normal distribution with common mean 40, com
mon standard deviation 6, and correlation .6. 
(a) Find the probability that the total of the next 2 weeks' 
sales exceeds 90. 
(b) If the correlation were .2 rather than .6, do you think 
that this would increase or decrease the answer to (a)? 
Explain your reasoning. 
(c) Repeat (a) when the correlation is .2. 

381 



382 

Properties of Expectation 

Theoretical Exercises 

I. Show that E[(X - a)2] is minimized at a= E[X]. 

2. Suppose that X is a continuous random variable with 
density function f. Show that E[IX - al] is minimized 
when a is equal to the median of F. 
Hint: Write 

E[IX - al] = j Ix - alf (x) dx 

Now break up the integral into the regions where x < a 
and where x > a, and differentiate. 

3. Prove Proposition 2.1 when 

(a) X and Y have a joint probability mass function; 
(b) X and Y have a joint probability density function and 
g(x,y) ~ 0 for all x,y. 

Hint: Define, for each nonnegative t, the random variable 
X(t) by 

{1 if t < x 
X(t) = 0 if t ~ X 

Now relate f000 X(t)dt to X. 

7. We say that X is stochastically larger than Y, written 
X ~1 Y, if, for all t, 

P{X > t} ~ P{Y > t} 

Show that if X ~1 Y, then E[X] ~ E[Y] when 

(a) X and Y are nonnegative random variables; 
(b) X and Y are arbitrary random variables. 
Hint: Write X as 

X=X+ - x-
4. Let X be a random variable having finite expectation where 
µ and variance a 2, and let g(-) be a twice differentiable 
function. Show that 

E[g(X)] ~ g(µ) + g"~) a 2 

Hint: Expand gO in a Taylor series about µ. Use the first 
three terms and ignore the remainder. 

S. Let Ai ,A2, ... ,An be arbitrary events, and define Ck = 
{at least k of the Ai occur}. Show that 

n n 

LP(Ck) = LP(Ak) 
k=l k=l 

Hint: Let X denote the number of the Ai that occur. Show 
that both sides of the preceding equation are equal to 
E[X]. 

6. In the chapter, we noted that 

when the Xi are all nonnegative random variables. Since 
an integral is a limit of sums, one might expect that 

E[fo00 
X(t)dt] = fo00 

E[X(t)]dt 

whenever X(t), 0 s: t < oo, are all nonnegative random 
variables; this result is indeed true. Use it to give another 
proof of the result that for a nonnegative random vari
able X, 

E[X) = fo00 P{X > t} dt 

x+ = {xo if x ~ o x- _ { o if x ~ o 
if X < 0' - -X if X < 0 

Similarly, represent Y as y+ - y-. Then make use of part 
(a). 

8. Show that X is stochastically larger than Y if and only if 

Efj(X)] ~ Efj(Y)] 

for all increasing functions f. 
Hint: ShowthatX ~1 Y, then Efj(X)] ~ Efj(Y)] by show
ing that f (X) ~1 f (Y) and then using Theoretical Exercise 
7. To show that if Efj(X)] ~ Efj(Y)] for all increasing func
tions/, then P{X > t} ~ P{Y > t}, define an appropriate 
increasing function f. 

9. A coin having probability p of landing on heads is 
flipped n times. Compute the expected number of runs of 
heads of size 1, of size 2, and of size k, 1 s: k s: n. 

I 0. Let Xi, X2, ... ,Xn be independent and identically dis
tributed positive random variables. For k s: n, find 

k 

L:xi 
E i=l 

n 

L:xi 
i=l 

I I. Consider n independent trials, each resulting in 
any one of r possible outcomes with 'probabilities 
Pi,P2, ... ,Pr. Let X denote the number of outcomes that 
never occur in any of the trials. Find E[X] and show 
that among all probability vectors P1, ... , Pr, E[X] is min
imized when Pi= l/r, i = 1, ... , r. 
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12. Let Xi.X2, ... be a sequence of independent random variables. We could also have obtained that result by using 
variables having the probability mass function the formula 

P{Xn. = O} = P{Xn = 2} = 1/2, n 2: 1 

The random variable X = L~=l Xn/3n is said to have the 
Cantor distribution. Find E[X] and Var(X}. 

13. Let X1,. . .,Xn be independent and identically dis
tributed continuous random variables. We say that a 
record value occurs at time j,j s n, if Xj 2: Xi for all 
1 s i s j. Show that 

n 

(a) E[number of record values] = L 1/j; 
j=l 

n 

(b) Var(number of record values)= L (j - 1) IP. 
j=l 

14. For Example 2i, show that the variance of the number 
of coupons needed to amass a full set is equal to 

N-1 'N 

?= (N '_ 02 
1=1 

When N is large, this can be shown to be approximately 
equal (in the sense that their ratio approaches 1 as N~oo) 
toN2rr2/6. 

(a) What is the distribution of Ni + Nj? 
(b) Use the preceding identity to show that Cov(Ni, Nj) = 
-mPiPj. 

19. Show that X and Y are identically distributed and not 
necessarily independent, then 

Cov(X + Y,X - Y) = 0 

20. The Conditional Covariance Formula. The conditional 
covariance of X and Y, given Z, is defined by 

Cov(X, YIZ) = E[(X - E[XIZ])(Y - E[YIZ])IZ] 

(a) Show that 

Cov(X, YIZ) = E[XYIZ] - E[XIZ]E[YIZ] 

(b) Prove the conditional covariance formula 

Cov(X, Y) = E[Cov(X, YIZ)] 

+ Cov(E[XIZ], E[YIZ]) 

(c) Set X = Yin part (b) and obtain the conditional vari-
15. Consider n independent trials, the ith of which results ance formula. 
in a success with probability Pi. 

(a) Compute the expected number of successes in then 
trials-call itµ,. 
(b) For a fixed value ofµ,, what choice of Pi. ... ,Pn maxi
mizes the variance of the number of successes? 
(c) What choice minimizes the variance? 

* 16. Suppose that each of the elements of S = {1, 2, ... , n} 
is to be colored either red or blue. Show that if Ai. ... ,A, 
are subsets of S, there is a way of doing the coloring so 

r 
that at most L: (1/2)1Ail-l of these subsets have all their 

i=l 
elements the same color (where IAI denotes the number 
of elements in the set A). 

17. Suppose that X1 and X2 are independent random 
variables having a common mean µ,. Suppose also that 
Var(X1) = uf and Var(X2) = uf. The value of µ, is 
unknown, and it is proposed that µ, be estimated by a 
weighted average of X1 and X2. That is, A.Xi + (1 - A.)X2 
will be used as an estimate of µ, for some appropriate value 
of A.. Which value of A. yields the estimate having the low
est possible variance? Explain why it is desirable to use 
this value of A.. 

21. Let X(I), i = 1, ... , n, denote the order statistics from a 
set of n uniform (0, 1) random variables, and note that the 
density function of X(i) is given by 

n! i-1 n-i 
f(x) = (i - l)!(n - i)!x (1 - x) 0 < x < 1 

(a) Compute Var(X(1)), i = 1, ... , n. 
(b) Which value of i minimizes, and which value maxi
mizes, Var(Xw)? 

22. Show that Y = a + bX, then 

{+1 ifb>O 
p(X, Y) = -1 if b < 0 

23. Show that Z is a standard normal random variable and 
if Y is defined by Y = a + bZ + cZ2, then 

(y Z)- b 
p ' - Jb2 + 2c2 

18. In Example 4f, we showed that the covariance of 24. Prove the Cauchy-Schwarz inequality, namely, 
the multinomial random variables Ni and Nj is equal to 
-mPiPj by expressing Ni and Nj as the sum of indicator (E[XY])2 s E[X2.]E[Y2] 
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Hint: Unless Y = -tX for some constant, in which case 
the inequality holds with equality, it follows that for all t, 

Hence, the roots of the quadratic equation 

E[X2]t2 + 2E[XY]t + E[Y2] = 0 

r 

E[X] = (1 - p) LPi-l(i + E[X]) 
i=l 

00 

+<1 - p) .E pi-lr 

i=r+l 

Simplify and solve for E[X]. 

34. For another approach to Theoretical Exercise 33, let 
must be imaginary, which implies that the discriminant of T, denote the number of flips required to obtain a run of r 
this quadratic equation must be negative. consecutive heads. 

25. Show that if X and Y are independent, then 

E[XIY = y] = E[X] for ally 

(a) in the discrete case; 
(b) in the continuous case. 

26. Prove that E[g(X) YIX] = g(X)E[YIX]. 

27. Prove that if E[YIX = x] = E[Y] for all x, then X and 
Y are uncorrelated; give a counterexample to show that 
the converse is not true. 
Hint: Prove and use the fact that E[XY] = E[XE[YIX]]. 

28. Show that Cov(X, E[YIX]) = Cov(X, Y). 

29. Let Xi. ... ,Xn be independent and identically dis-
tributed random variables. Fmd 

E[X1IX1 + ··· + Xn =x] 

30. Consider Example 4f, which is concerned with the 
multinomial distribution. Use conditional expectation to 
compute E[NiN;], and then use this to verify the formula 
for Cov(Ni, N;) gtven in Example 4f 

31. An um initially contains b black and w white balls. At 
each stage, we add r black balls and then withdraw, at ran
dom, r balls from the b + w + r balls in the um. Show that 

£[number of white balls after stage t] 

( b + w )' 
= b+w+r w 

(a) Determine E[T,IT,_i]. 
(b) Determine E[T,] in terms of E[T,_1]. 
(c) What is E[Ti]? 
(d) What is E[T,]? 

35. The probability generating function of the discrete 
nonnegative integer valued random variable X having 
probability mass functionp;,j ~ 0, is defined by 

00 

<fJ(s) = E[s-¥] = LPi 
j=O 

Let Y be a geometric random variable with parameter 
p = 1 - s, where 0 < s < 1. Suppose that Y is independent 
of X, and show that 

</J(s) = P{X < Y} 

36. One ball at a time is randomly selected from an um 
containing a white and b black balls until all of the remain
ing balls are of the same color. Let Ma,b denote the 
expected number of balls left in the um when the exper
iment ends. Compute a recursive formula for Ma,b and 
solve when a = 3 and b = 5. 

37. An um contains a white and b black balls. After a ball 
is drawn, it is returned to the um if it is white; but if it is 
black, it is replaced by a white ball from another um. Let 
Mn denote the expected number of white balls in the um 
after the foregoing operation has been repeated n times. 

(a) Derive the recursive equation 

32. For an event A, let IA equal 1 if A occurs and 
let it equal 0 if A does not occur. For a random 
variable x, show that (b) Use part (a) to prove that 

E[XIA] = E[XIA] 
P(A) 

33. A coin that lands on heads with probability p is contin
ually flipped. Compute the expected number of flips that 
are made until a string of r heads in a row is obtained. 
Hint: Condition on the time of the first occurrence of tails 
to obtain the equation 

Mn =a + b - b (1 - -1-)n 
a+ b 

(c) What is the probability that the (n + 1), ball drawn is 
white? 

38. The best linear predictor of Y with respect to X1 and 
X2 is equal to a + bX1 + cX2, where a, b, and care chosen 
to minimize 
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Determine a, b, and c. 

39. The best quadratic predictor of Y with respect to X is 
a + bX + cX2, where a, b, and c are chosen to minimize 
E[(Y - (a + bX + cX2))2]. Determine a, b, and c. 

individual. Suppose that Xo = 1- that is, initially there is 
a single individual in the population. 

(a) Show that 
E[Xn] = µE[Xn-1] 

(b) Use part (a) to conclude that 

40. Use the conditional variance formula to determine the 
variance of a geometric random variable X having param-
eter p. (c) Show that 

41. Let X be a normal random variable with parameters 
µ = 0 and a 2 = 1, and let I, independent of X, be such 
that P{/ = 1} = ~ = P{l = O}. Now define Y by 

Y-{ X ifl=l 
- -X ifl=O 

In words, Y is equally likely to equal either X or - X. 

(a) Are X and Y independent? 
(b) Are I and Y independent? 
(c) Show that Y is normal with mean 0 and variance 1. 
(d) Show that Cov(X, Y) = 0. 

42. It follows from Proposition 6.1 and the fact that the 
best linear predictor of Y with respect to X is µy + 
p;;(x - µx)thatif 

then 

E[YIX] = a + bX 

ay 
a=µy-p-µx 

ax 
b=pay 

ax 

(Why?) Verify this directly. 

43. Show that for random variables X and Z, 

where 

Y =E[XIZ] 

44. Consider a population consisting of individuals able to 
produce offspring of the same kind. Suppose that by the 
end of its lifetime, each individual will have produced j 
new offspring with probability Pj, j 2: 0, independently 
of the number produced by any other individual. The 
number of individuals initially present, denoted by Xo, 
is called the size of the zeroth generation. All offspring 
of the zeroth generation constitute the first generation, 
and their number is denoted by X1. In general, let Xn 

00 

denote the size of the nth generation. Let µ = L jPj and 
j=O 

00 

a2 = L (j - µ )2 Pj denote, respectively, the mean and the 
j=O 

variance of the number of offspring produced by a single 

(d) Use part (c) to conclude that 

ifµ=l=l 

ifµ= 1 

The model just described is known as a branching process, 
and an important question for a population that evolves 
along such lines is the probability that the population will 
eventually die out. Let rr denote this probability when the 
population starts with a single individual. That is, 

rr = P{population eventually dies outlXo = 1) 

( e) Argue that rr satisfies 

00 

rr = LPjrrj 

j=O 

Hint: Condition on the number of offspring of the initial 
member of the population. 

45. Verify the formula for the moment generating function 
of a uniform random variable that is given in Table 2. Also, 
differentiate to verify the formulas for the mean and vari
ance. 

46. For a standard normal random variable Z, let µn = 
E[Zn]. Show that 

µn = 1~2p! 
2J ., l· 

whennisodd 

whenn = 2j 

Hint: Start by expanding the moment generating function 
of Z into a Taylor series about 0 to obtain 

E[etZ] = et2;2 

= ~ (t2/2'/ 
~ ., 
j=O l· 

47. Let X be a normal random variable with mean µ and 
variance a 2 . Use the results of Theoretical Exercise 46 to 
show that 
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n [n/2] ( ~) µn-2ju2i(2j)! 

E[X ] = L '}j"I 
j=O 1· 

In the preceding equation, [n/2] is the largest integer less 
than or equal to n/2. Check your answer by letting n = 1 
andn = 2. 

48. If Y = aX + b, where a and bare constants, express 
the moment generating function of Y in terms of the 
moment generating function of X. 

49. The positive random variable Xis said to be a lognor
mal random variable with parameters µ and u2 if log(X) 
is a normal random variable with mean µ and variance u2• 

Use the normal moment generating function to find the 
mean and variance of a lognormal random variable. 

SO. Let X have moment generating function M(t), and 
define \ll(t) = logM(t). Show that 

\1111 (t) it=O = Var(X) 

n 
s I. Use Table 2 to determine the distribution of L xi 

i=l 
when X1,. . ., Xn are independent and identically 
distributed exponential random variables, each having 
mean 1/).... 

Self-Test Problems and Exercises 

I. Consider a list of m names, where the same name may 
appear more than once on the list. Let n(i), i = 1, ... , m, 
denote the number of times that the name in position i 
appears on the list, and let d denote the number of distinct 
names on the list.-
( a) Express din terms of the variables m,n(i), i = 1, ... ,m. 
Let U be a uniform (0, 1) random variable, and let X = 
[mU] + 1. 
(b) What is the probability mass function of X? 
(c) Argue that E[m/n(X)] = d. 

2. An urn has n white and m black balls that are removed 
one at a time in a randomly chosen order. Find the 
expected number of instances in which a white ball is 
immediately followed by a black one. 

3. Twenty individuals consisting of 10 married couples are 
to be seated at 5 different tables, with 4 people at each 
table. 

S2. Show how to compute Cov(X, Y) from the joint 
moment generating function of X and Y. 

S3. Suppose that X1,. . .,Xn have a multivariate normal 
distribution. Show that Xi. ... ,Xn are independent ran
dom variables if and only if 

Cov(Xi,Xj) = 0 when i '# j 

S4. If Z is a standard normal random variable, what is 
Cov(Z,Z2)? 

SS. Suppose that Y is a normal random variable with mean 
µ and variance u2 , and suppose also that the conditional 
distribution of X, given that Y = y, is normal with meany 
and variance 1. 

(a) Argue that the joint distribution of X, Y is the same 
as that of Y + Z, Y when Z is a standard normal random 
variable that is independent of Y. 
(b) Use the result of part (a) to argue that X, Y has a 
bivariate normal distribution. 
(c) Find E[X], Var(X), and Corr{X, Y). 
(d) Find E[YIX = x]. 
( e) What is the conditional distribution of Y given that 
X=x? 

4. If a die is to be rolled until all sides have appeared at 
least once, find the expected number of times that outcome 
1 appears. 

S. A deck of 2n cards consists of n red and n black cards. 
The cards are shuffled and then turned over one at a time. 
Suppose that each time a red card is turned over, we win 
1 unit if more red cards than black cards have been turned 
over by that time. (For instance, if n = 2 and the result 
is r b r b, then we would win a total of 2 units.) Find the 
expected amount that we win. 

6. Let Ai,A2, ... ,An be events, and let N denote the num
ber of them that occur. Also, let I = 1 if all of these 
events occur, and let it be 0 otherwise. Prove Bonferroni's 
inequality, namely, 

n 

P(A1 .. ·An)~ LP(Ai) - (n - 1) 
i=l 

(a) If the seating is done "at random," what is the expected Hint: Argue first that N ::;; n _ 1 + I. 
number of married couples that are seated at the same 
table? 
(b) If 2 men and 2 women are randomly chosen to be 
seated at each table, what is the expected number of mar
ried couples that are seated at the same table? 

7. Let X be the smallest value obtained when k num
bers are randomly chosen from the set 1, ... ,n. Fmd E[X] 
by interpreting X as a negative hypergeometric random 
variable. 



. Properties of Expectation 

8. An arriving plane carries r families. A total of ni of 
these families have checked in a total of j pieces of lug
gage, L ni = r. Suppose that when the plane lands, the 

j . 

N = Lini pieces of luggage come out of the plane in a ran-
j 

dom order. As soon as a family collects all of its luggage, 
it immediately departs the airport. If the Sanchez family 
checked in j pieces of luggage, find the expected number 
of families that depart after they do. 

* 9. Nineteen items on the rim of a circle of radius 1 are to be 
chosen. Show that for any choice of these points, there will 
be an arc of (arc) length 1 that contains at least 4 of them. 

I 0. Let X be a Poisson random variable with mean A.. Show 
that if A. is not too small, then 

Var( ./X) ~ .25 

Hint: Use the result of Theoretical Exercise 4 to approxi
mate E[./X]. 

11. Suppose in Self-Test Problem 3 that the 20 people are 
to be seated at seven tables, three of which have 4 seats 
and four of which have 2 seats. If the people are randomly 
seated, find the expected value of the number of married 
couples that are seated at the same table. 

12. Individuals 1 through n, n > 1, are to be recruited into 
a firm in the following manner: Individual 1 starts the firm 
and recruits individual 2. Individuals 1 and 2 will then com
pete to recruit individual 3. Once individual 3 is recruited, 
individuals 1, 2, and 3 will compete to recruit individual 4, 
and so on. Suppose that when individuals 1, 2, ... , i com
pete to recruit individual i + 1, each of them is equally 
likely to be the successful recruiter. 

(a) Find the expected number of the individuals 1, ... ,n 
who did not recruit anyone else. 
(b) Derive an expression for the variance of the number of 
individuals who did not recruit anyone else, and evaluate 
it for n = 5. 

13. The nine players on a basketball team consist of 2 cen
ters, 3 forwards, and 4 backcourt players. If the players are 
paired up at random into three groups of size 3 each, find 
(a) the expected value and (b) the variance of the number 
of triplets consisting of one of each type of player. 

14. A deck of 52 cards is shuffled and a bridge hand of 13 
cards is dealt out. Let X and Y denote, respectively, the 
number of aces and the number of spades in the hand. 

(a) Show that X and Y are uncorrelated. 
(b) Are they independent? 

IS. Each coin in a bin has a value attached to it. Each time 
that a coin with value p is flipped, it lands on heads with 
probability p. When a coin is randomly chosen from the 
bin, its value is uniformly distributed on (0, 1). Suppose 
that after the coin is chosen but before it is flipped, you 

must predict whether it will land on heads or on tails. You 
will win 1 if you are correct and will lose 1 otherwise. 

(a) What is your expected gain if you are not told the value 
of the coin? 
(b) Suppose now that you are allowed to inspect the coin 
before it is flipped, with the result of your inspection being 
that you learn the value of the coin. As a function ofp, the 
value of the coin, what prediction should you make? 
(c) Under the conditions of part (b}, what is your expected 
gain? 

16. In Self-Test Problem 1, we showed how to use the 
value of a uniform (0, 1) random variable (commonly 
called a random number) to obtain the value of a random 
variable whose mean is equal to the expected number of 
distinct names on a list. However, its use required that one 
choose a random position and then determine the num
ber of times that the name in that position appears on 
the list. Another approach, which can be more efficient 
when there is a large amount of replicatipn of names, is 
as follows: As before, start by choosing the random vari
able X as in Problem l. Now identify the name in position 
X, and then go through the list, starting at the beginning, 
until that name appears. Let I equal 0 if you encounter that 
name before getting to position X, and let I equal 1 if your 
first encounter with the name is at position X. Show that 
E[ml] = d. 
Hint: Compute E[J] by using conditional expectation. 

I 7. A total of m items are to be sequentially distributed 
among n cells, with each item independently being put in 
cell j with probability Pi> j = 1, ... ,n. Find the expected 
number of collisions that occur, where a collision occurs 
whenever an item is put into a nonempty cell. 

18. Let X be the length of the initial run in a random 
ordering of n ones and m zeros. That is, if the first k val
ues are the same (either all ones or all zeros), then X 2: k. 
FindE[X]. 

19. There are n items in a box labeled H and m in a box 
labeled T. A coin that comes up heads with probability p 
and tails with probability 1 - p is flipped. Each time it 
comes up heads, an item is removed from the H box, and 
each time it comes up tails, an item is removed from the 
T box. (If a box is empty and its outcome occurs, then no 
items are removed.) Find the expected number of coin flips 
needed for both boxes to become empty. 
Hint: Condition on the number of heads in the first n + m 
flips. 

20. Let X be a nonnegative random variable having distri
bution function F. Show that ifF(x) = 1 - F(x), then 
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Hint: Start with the identity 

xn = n fox .ri-1 dx 

= n fo00 .ri-1 lx(x) dx 

where 
I ( ) { 1, if x < X 
x x = 0, otherwise 

• 21. Let ai, ... , an, not all equal to 0, be such that I:~1 ai = 
0. Show that there is a permutation ii, ... , in such that 
I:.f=1 aiiai1+i < 0. 
Hint: Use the probabilistic method. (It is interesting that 
there need not be a permutation whose sum of products 
of successive pairs is positive. For instance, if n = 3, 
ai = a2 = -1, and a3 = 2, there is no such permutation.) 

22. Suppose that Xi, i = 1, 2, 3, are independent Poisson 
random variables with respective means Ai, i = 1, 2, 3. Let 
X = X1 + X2 and Y = X2 + X3. The random vector X, Y 
is said to have a bivariate Poisson distribution. 

(a) Find E[X] and E[Y]. 
(b) Find Cov(X, Y). 

The preceding comes up in statistics. Suppose you are 
about to observe the value of a random variable X that 
is normally distributed with an unknown meanµ, and vari
ance 1, and suppose that you want to test the hypothesis 
that the mean µ, is greater than or equal to 0. Qearly 
you would want to reject this hypothesis if X is suf
ficiently small. If it results that X = x, then the p
value of the hypothesis that the mean is greater than 
or equal to 0 is defined to be the probability that X 
would be as small as x if µ, were equal to 0 (its small
est possible value if the hypothesis were true). (A small 
p-value is taken as an indication that the hypothesis is 
probably false.) Because X has a standard normal dis
tribution when µ, = 0, the p-value that results when 
X = xis <l>(x). Therefore, the preceding shows that the 
expected p-value that results when the true mean is µ, 

is <I> (ti)· 
26. A coin that comes up heads with probability p is 
flipped until either a total of n heads or of m tails is 
amassed. Find the expected number of flips. 
Hint: Imagine that one continues to flip even after the 
goal is attained. Let X denote the number of flips needed 
to obtain n heads, and let Y denote the number of 
flips needed to obtain m tails. Note that max(X, Y) + 

(c) Find the joint probability mass function P{X 
Y=j}. 

= i, min(X, Y) = X + Y. Compute E[max(X, Y)] by con
ditioning on the number of heads in the first n + m - 1 
flips. 

23. Let (Xi, Yi), i = 1, ... , be a sequence of independent 
and identically distributed random vectors. That is, X1, Y1 
is independent of, and has the same distribution as, X2, Y2, 
and so on. Although Xi and Yi can be dependent, Xi and 
Y; are independent when i "# j. Let 

J.Lx = E[Xi], J.Ly = E[Yi], u; = Var(Xi), 

u'J = Var(Yi), p = Corr(Xi, Yi) 

Find Corr(I:~1 xi. LJ=l Y;). 

24. Three cards are randomly chosen without replacement 
from an ordinary deck of 52 cards. Let X denote the num
ber of aces chosen. 

(a) Find E[Xlthe ace of spades is chosen]. 
(b) Find E[Xlat least one ace is chosen]. 

25. Let <I> be the standard normal distribution function, 
and let X be a normal random variable with mean µ, and 
variance 1. We want to find E[<l>(X)]. To do so, let Z be 
a standard normal random variable that is independent of 
X, and let 

I= { 1, ~f Z < X 
0, if z 2:: x 

(a) Show that E[IIX = x] = <l>(x). 
(b) Show that E[<l>(X)] = P{Z < X}. 

(c) Show that E[ <l>(X)] =<I> (ti)· 
Hint: What is the distribution of X - Z? 

27. A deck of n cards numbered 1 through n, initially in 
any arbitrary order, is shuffled in the following manner: At 
each stage, we randomly choose one of the cards and move 
it to the front of the deck, leaving the relative positions 
of the other cards unchanged. This procedure is contin
ued until all but one of the cards has been chosen. At this 
point, it follows by symmetry that all n! possible orderings 
are equally likely. Find the expected number of stages that 
are required. 

28. Suppose that a sequence of independent trials in which 
each trial is a success with probability p is performed until 
either a success occurs or a total of n trials has been 
reached. Find the mean number of trials that are per
formed. 
Hint: The computations are simplified if you use the 
identity that for a nonnegative integer valued random 
variableX, 

00 

E[X] = L P{X 2! i} 
i=l 

29. Suppose that X and Y are both Bernoulli r:andom vari
ables. Show that X and Y are independent if and only if 
Cov(X, Y) = 0. 

30. In the generalized match problem, there are n individ
uals of whom ni wear hat size i, Lt=l ni = n. There are 
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also n hats, of which hi are of size i, I:r=1 hi = n. If each 32. Starting with 
individual randomly chooses a hat (without replacement), 
find the expected number who choose a hat that is their 
size. 

31. For random variables X and Y, show that 

Jvar(X + Y) s Jvar(X) + Jvar(Y) 

t2 x2 i3 x3 (' xn 
e'x = 1 + tX + - 21 + - 31 + ... + - 1- + ... 

. . n. 

show that 

(a) 

tX t2 E[X2 ] f' E[Xn] 
M(t) = E[e ] = 1 + tE[X] + 21 + ... + 1 + ... 

That is, show that the standard deviation of a sum is · n. 
always less than or equal to the sum of the standard dn 
deviations. (b) Use (a) to show that dt" M(t)lt=O = E[Xn] 
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Solutions to Self-Test Problems and Exercises 

m 
I. (a) d =I: l/n(i) 

i=1 

(b) P{X = i} = P{[mU] = i - 1} = P{i - 1 s mU < i} = 
l/m, i= l, ... ,m 

[ m] mm ~ml 
(c) E - = I: -. P{X = i} = L -. - = d 

n(X) i=l n(i) i=l n(i) m 

2. Let Ij equal 1 if the jth ball withdrawn is white and the 
(j + 1) is black, and let Ii equal 0 otherwise. If Xis the 
number of instances in which a white ball is immediately 
followed by a black one, then we may express X as 

Thus, 

n+m-1 

E[X] = L E[Ij] 
i=1 

n+m-1 

n+m-1 
X= L Ij 

j=1 

= L P{J111 selection is white, (j + 1) is black} 
j=l 

n+m-1 

L P{jth selection is white}P{(j + 1) is black1J111 is white} 
j=l 

n+m-1 
""" n m = ~ n+mn+m-1 
]=1 

nm 
n+m 

The preceding used the fact that each of the n + m balls 
is equally likely to be the jth one selected and, given that 
that selection is a white ball, each of the other n + m - 1 
balls is equally likely to be the next ball chosen. 

3. Arbitrarily number the couples, and then let Ij equal 1 
if married couple number j,j = 1, ... , 10, is seated at the 
same table. Then, if X represents the number of married 
couples that are seated at the same table, we have 

so 

10 

X=Lli 
i=1 

10 

E[X] = LE[Ij] 
j=1 

(aj To compute E[Ij] in this case, consider wife number j. 

Since each of the (1J) groups of size 3 not including her 

is equally likely to be the remaining members of her table, 
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it follows that the probability that her husband is at her 
table is 

Hence, E[Ij] = 3/19 and so 

3 
19 

E[X] = 30/19 

(b) In this case, since the 2 men at the table of wife j are 
equally likely to be any of the 10 men, it follows that the 
probability that one of them is her husband is 2/10, so 

E[Ij] = 2/10 and E[X] = 2 

4. From Example 2i, we know that the expected number 
of times that the die need be rolled until all sides have 
appeared at least once is 6(1 + 1/2 + 1/3 + 1/4 + 1/5 + 
1/6) = 14.7. Now, if we let Xi denote the total number of 

6 
times that side i appears, then, since L Xi is equal to the 

i=l 
total number of rolls, we have 

But, by symmetry, E[Xi] will be the same for all i, and thus 
it follows from the preceding that E[X1] = 14.7 /6 = 2.45. 

S. Let Ij equal 1 if we win 1 when the jth red card to show 
is turned over, and let Ij equal 0 otherwise. (For instance, 
Ii will equal 1 if the first card turned over is red.) Hence, if 
X is our total winnings, then 

Now, Ij will equal 1 if j red cards appear before j black 
cards. By symmetry, the probability of this event is equal 
to 1/2; therefore, E[Ij] = 1/2 and E[X] = n/2. 

6. To see that N s n - 1 + I, note that if all events occur, 
then both sides of the preceding inequality are equal to 
n, whereas if they do not all occur, then the inequality 
reduces to N s n - 1, which is clearly true in this case. 
Taking expectations yields 

E[ N] s n - 1 + E[ I] 

However, if we let Ji equal 1 if Ai occurs and 0 other
wise, then 

Since E[J] = P(A1 ···An), the result follows. 

7. Imagine that the values 1,2, ... ,n are lined up in their 
numerical order and that the k values selected are con
sidered special. From Example 3e, the position of the first 
special value, equal to the smallest value chosen, has mean 

n-k n+l 
1 + k+l =k+l' 

For a more formal argument, note that X ~ j if none of 
the j - 1 smallest values are chosen. Hence, 

which shows that X has the same distribution as the ran
dom variable of Example 3e (with the notational change 
that the total number of balls is now n and the number of 
special balls is k). 

8. Let X denote the number of families that depart after 
the Sanchez family leaves. Arbitrarily number all the N -
1 non-Sanchez families, and let Ir, 1 s r s N - 1, equal 1 
if family r departs after the Sanchez family does. Then 

N-1 

X= Llr 
r=l 

Taking expectations gives 

N-1 

E[X] = L P{family r departs after the Sanchez family} 
r=l 

Now consider any non-Sanchez family that checked ink 
pieces of luggage. Because each of the k + j pieces of lug
gage checked in either by this family or by the Sanchez 
family is equally likely to be the last of these k + j to 
appear, the probability that this family departs after the 
Sanchez family is ft;. Because the number of non-Sanchez 
families who checked in k pieces of luggage is nk when 
k #"- j, or nj - 1 when k = j, we obtain 

E[X] = ""'"' knk _ ~ 
L,,k+' 2 

k J 

9. Let the neighborhood of any point on the rim be the arc 
starting at that point and extending for a length 1. Con
sider a uniformly chosen point on the rim of the circle
that is, the probability that this point lies on a specified arc 

of length x is 2: - and let X denote the number of points 

that lie in its neighborhood. With Ij defined to equal 1 if 
item number j is in the neighborhood of the i;andom point 
and to equal 0 otherwise, we have 
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Taking expectations gives 

19 

E[X] = L P{item j lies in the neighborhood of the 
j=l 

random point} 

and 

1 1 
E[Xij]= ( 2~) = 190 , j=4,5,6,7 

But because item j will lie in its neighborhood if the ran- Now, X denotes the number of married couples that are 
dom point is located on the arc of length 1 going from item seated at the same table, we have 
j in the counterclockwise direction, it follows that 

P{item j lies in the neighborhood of the random point} 

1 
=-

2;rr 

Hence, 
19 

E[X] = 2;rr > 3 

Because E[X] > 3, at least one of the possible values of X 
must exceed 3, proving the result. 

IO. If g(x) = x112, then 

g(x) = !x-112, g'(x) = _!x-3/2 
2 4 

so the Taylor series expansion of ,./X about A. gives 

Taking expectations yields 

E[vtx] ~ ./i + !A.-112E[X - A.] - !A.-312E[(X - A.)2] 
2 8 

Hence, 

= .ji _ !A.-3/2>.. 
8 

= .ji _ !A. -1/2 
8 

Var(vtx) = E[X] - (E[vtx])2 

~A. - ( .ji - ~A.-l/2y 
1 

= 1/4 - 64A. 

~ 1/4 

11. Number the tables so that tables 1, 2, and 3 are the ones 
with four seats and tables 4, 5, 6, and 7 are the ones with 
two seats. Also, number the women, and let Xij equal 1 if 
woman i is seated with her husband at table j. Note that 

(~)(~) 3 

E[Xij] = ( 2~) = 95' j = 1,2,3 

[ 
10 7 ] 

E[X] = E 'EfiXij 

10 3 10 7 

= LLE[Xij] + LLE[Xij] 
i=l j=l i=l j=4 

12. Let Xi equal 1 if individual i does nq__t recruit anyone, 
and let xi equal 0 otherwise. Then 

E[Xi] =P{idoesnotrecruitanyofi + l,i + 2, ... ,n} 

i-1 n-2 
=-i-i+l ... n-1 

i - 1 
=n-1 

Hence, 

From the preceding, we also obtain 

. _ ~ ( _ ~) _ (i - l)(n - i) 
Var(X,) - 1 1 1 - l)2 

n - n - (n -

Now, for i < j, 

i - 1 j - 2j - 2j - 1 n - 3 
E[XiXj] = -i- ... J-. --1-j -1-. +-1 ... -n---1 

(i - l)(j - 2) 
= (n - 2)(n - 1) 

Thus, 

(i - l)(j - 2) 
Cov(Xi,Xj) = (n _ 2)(n _ l) 

_ (i - l)(j - n) 

- (n - 2)(n - 1)2 

i-lj-1 -----
n-ln-1 
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Therefore, 

Var ( t,x.) ~ t, Var(X1) + 2 f if, Cov(X;, X;) 

= t (i - l)(n ~ i) + 2 I: t (i - l)(i - n) 
2 

i=l (n - 1) i=l j=i+l (n - 2)(n - 1) 

= 1 
2 'tu - l)(n - i) 

(n - 1) i=l 

l n-1 

- (n _ 2)(n _ 1)2 ~(i - l)(n - i)(n - i - 1) 
1=1 

13. Let X; equal 1 if the ith triple consists of one of each 
type of player. Then 

E[X] = ( i ) ( i ) ( 1 ) = ~ 
I (;) 7 

Hence, for part (a), we obtain 

It follows from the preceding that 

Var(X;) = (2/7)(1 - 2/7) = 10/49 

Also, for i "# j, 

E[X;Xj] = E'{Xi = l,Xj = 1} 

= P{X; = l}P{Xj = l!Xi = 1} 

(i)(i)(1) (t)(i)(i) 
= -'---'--'--'-------'- -'---'---"---'--'---'-

(;) (~) 
= 6/70 

Hence, for part (b ), we obtain 

Var ( t,x.) ~ t, Var(X1) + 2 Lt; Cov(X1,X;) 

= 30/49 + 2 ( ; ) ( 7~ - 4~) 
312 

= 490 

14. Let Xi, i = 1, .. ., 13, equal 1 if the ith card is an ace 
and let X; be 0 otherwise. Let Yj equal 1 if the jth card is a 
spade and let Yj = 0 otherwise. Now, 

Cov(X,Y) ~cov (f?•·f,Y;) 
13 13 

=LL Cov(X;, Yj) 
i=l j=l 

However, X; is clearly independent of Yj because know
ing the suit of a particular card gives no information about 
whether it is an ace and thus cannot affect the probabil
ity that another specified card is an ace. More formally, let 
A;,s,A;,h,Ai,d•Ai,c be the events, respectively, that card i 
is a spade, a heart, a diamond, and a club. Then 

1 
P{Yj = 1} = 4'(P{Yj = liA;,s} + P{Yj = l!Ai,h} 

+ P{Yj = liA;,d} + P{Yj = l!Ai,c}) 

But, by symmetry, we have 

P{Yj = l!Ai,s} = P{Yj = l!Ai,h} = P{Yj = l!Ai,d} 

= P{Yj = liA;,c} 

Therefore, 
P{Yj = 1} = P{Yj = liA;,s} 

As the preceding implies that 

P{Yj = 1} = P{Yj = liAf,s} 

we see that Yj and X; are independent. Hence, 
Cov(Xi, Yj) = 0, and thus Cov(X, Y) = 0. 

The random variables X and Y, although uncorrelated, 
are not independent. This follows, for instance, from the 
fact that 

P{Y = 13iX = 4} = 0 "# P{Y = 13} 

IS. (a) Your expected gain without any information is 0. 
(b) You should predict heads if p > 1 /2 and tails otherwise. 
(c) Conditioning on V, the value of the coin, gives 

E[Gain] = fo1 
E[Gain!V = p] dp 

LU2 11 = [1(1-p)-l(p)] dp+ [l(p)-1(1-p)] dp 
0 1/2 . 

= 1/2 

16. Given that the name chosen appears in n(X) different 
positions on the list, since each of these positions is equally 
likely to be the one chosen, it follows that 

E[Iin(X)] = P{l = lin(X)} = l/n(X) 

Hence, 
E[I] = E[l/n(X)] 

Thus, E[ml] = E[m/n(X)] = d. 
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17. Letting Xi equal I if a collision occurs when the ith item 
is placed, and letting it equal 0 otherwise, we can express 
the total number of collisions X as 

Therefore, 
m 

E[X] = L E[Xi] 
i=l 

are zeroes. (For instance, if the initial value of the remain
ing n + m - 1 is zero, then L = l.) As a similar result is 
true given that the first value is a zero, we obtain from the 
preceding, upon using the result from Example 3e, that 

E[L] = n + m_n_ + n + m __.!!!._ 
m+ln+m n+ln+m 

n m 
=m+l+n+l 

To determine E[Xi], condition on the cell in which it is 19. Let X be the number of flips needed for both boxes to 
placed. become empty, and let Y denote the number of heads in 

the first n + m flips. Then 

E[Xi] = L E[X;I placed in cell f]p; 
j 

= L P{i causes collisionlplaced in cell fjp; 
j 

= L[l - (1 - P;)i-l]p; 

j 

= 1 - L(l - P;)i-1Pi 
j 

The next to last equality used the fact that, conditional on 
item i being placed in cell j, item i will cause a collision if 
any of the preceding i - 1 items were put in cell j. Thus, 

m n 

E[X] = m - LL(l - P;)i-1Pi 
i=l j=l 

Interchanging the order of the summations gives 

n 

E[X]=m - n + L(l - P;r 
j=l 

Looking at the result shows that we could have derived 
it more easily by taking expectations of both sides of the 
identity 

number of nonempty cells = m - X 

The expected number of nonempty cells is then found by 
defining an indicator variable for each cell, equal to 1 if 
that cell is nonempty and to 0 otherwise, and then taking 
the expectation of the sum of these indicator variables. 

18. Let L denote the length of the initial run. Conditioning 
on the first value gives 

E[L] = E[Llfirst value is one]-n
n + m 

+ E[ LI first value is zero]__.!!!._ 
n+m 

n+m 
E[X] = L E[XIY = i]P{Y = i} 

i=O 

Now, if the number of heads in the first n + m flips is i, 
i s n, then the number of additional flips is the number 
of flips needed to obtain an additional n - i heads. Sim
ilarly, if the number of heads in the first n + m flips is 
i, i > n, then, because there would have been a total of 
n + m - i < m tails, the number of additional flips is the 
number needed to obtain an additional i - n heads. Since 
the number of flips needed for j outcomes of a particular 
type is a negative binomial random variable whose mean 
is j divided by the probability of that outcome, we obtain 

n+m . ( ) + L ~ = n n 1j m pi(l - p)n+m-i 
i=n+l p 

20. Taking expectations of both sides of the identity given 
in the hint yields 

E[Xn] = E [ n fo00 ~-l lx(x) dx] 

= n fo00 E[xn-llx(x)]dx 

= n fo00 ~-1E[lx(x)]dx 

= n looo ~-l:F(x) dx 

Now, if the first value is one, then the length of the run Taking the expectation inside the integral sign is justified 
will be the position of the first zero when considering the because all the random variables lx(x), 0 < x < oo, are 
remaining n + m - 1 values, of which n - 1 are ones and m nonnegative. 
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21. Consider a random permutation Ii, ... Jn that is 
equally likely to be any of then! permutations. Then 

where the final equality followed from the assumption that 
L::'.:1 a; = 0. Since the preceding shows that 

[
n-1 ] 

E ~ a1ia1i+t < 0 
]=l 

it follows that there must be some permutation ii, ... , in 
for which 

n-1 

L a;iaii+t < 0 
j=l 

22. (a) E[X] = A.1 + A.2, E[Y] = A.2 + A.3 

(b)Cov(X, Y) = Cov(X1 + X2,X2 + X3) 

= Cov(X1, X2 + X3) + Cov(X2, X2 + X3) 

= Cov(X2,X2) 

= Var(X2) 

= A.2 

(c) Conditioning on X2 gives 

P{X = i, Y =j} 

= LP{X = i, y =jlX2 = k}P{X2 = k} 
k 

= LP{X1 = i - k,X3 =j - klX2 = k}e->-2 ).~/k! 
k 

= LP{X1 = i - k,X3 =j - k}e->-2).~/k! 
k 

= LP{X1 = i - k}P{X3 =j - k}e->-2 ).~/k! 
k 

min(iJ) ).i-k >.1-k ). k 
= "'""' ->-1 1 ->.3 3 ->.2 2 

L e (i - k)! e (j - k)! e k! 
k=O 

nprrxrry 
=--

where the next to last equality used the fact that 
Cov(X;, Yi) = prrxrry 

24. Let X; equal 1 if the ith card chosen is an ace, and let it 
equal 0 otherwise. Because 

and E[Xi] = P{Xi = 1} = 1/13, it follows that E[X] = 
3 /13. But, with A being the event that the ace of spades is 
chosen, we have 

E[X] = E[XIA]P(A) + E[XIAc]P(Ac) 

= E[XIA]:2 + E[XIAc]~~ 

~ E[XIA):2 + :~E [t,x.w] 
3 49 3 

= E[XIA]52 + 52 LE[X;IAC] 
i=l 

3 49 3 
= E[XIA]52 + 52 3 51 

Using that E[X] = 3/13 gives the result 

52 ( 3 49 3) 19 
E[XIA] = 3 13 - 5217 = 17 = 1.1176 

Similarly, letting L be the event that at least one ace is 
chosen, we have 

Thus, 

E[X] = E[XIL]P(L) + E[XIU]P(Lc) 

= E[XIL]P(L) 

( 48. 47. 46) 
=E[XIL] l - 52 · 51 · 50 

E[XIL] = 3/l3 RJ 1.0616 1 48.47.46 - IDnl! 
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Another way to solve this problem is to number the four 
aces, with the ace of spades having number 1, and then let 
Yi equal 1 if ace number i is chosen and 0 otherwise. Then 

~[XIA] = E [ t, Y,IY1 = 1] 

4 

= 1 + LE[YilY1=1] 
i=2 

2 
= 1 + 3 . - = 19/17 

51 

where we used that the fact given that the ace of spades 
is chosen the other two cards are equally likely to be any 
pair of the remaining 51 cards; so the conditional probabil
ity that any specified card (not equal to the ace of spades) 
is chosen is 2/51. Also, 

E[XIL] = E [ t Y,IL] = t,E[Y,IL] = 4P{Yt = 11LJ 

Because 
P(AL) P(A) 3/52 

P{Y1 = liL} = P(AIL) = P(L) = P(L) = l _ 48-47·46 
52-5r.3ii 

we obtain the same answer as before. 

25. (a) E[IIX = x] = P{Z < XIX= x} = P{Z < xlX = x} 
= P{Z < x} = <l>{x) 
(b) It follows from part (a) that E[IIX] = <l>(X). There
fore, 

E[I] = E[E[IIX]] = E[<l>(X)] 

Now, suppose we are given that there are a total of i heads 
in the first n + m - 1 trials. If i < n, then we have already 
obtained at least m tails, so the additional number of flips 
needed is equal to the number needed for an additional 
n - i heads; similarly, if i ;;::: n, then we have already 
obtained at least n heads, so the additional number of flips 
needed is equal to the number needed for an additional 
m - (n + m - 1 - i) tails. Consequently, we have 

n-1 ( ') E[M] = L n + m - 1 + n - 1 P{N = i} 
i=O p 

n+m-1 ( . + l ) 
+ ?= n + m - 1 + 1 

1 _ - n P{N = i} 
1=n p 

n-ln - i(n + m-l). . = n + m - 1+ L:-- . p'(l-p)n+m-l-1 
i=O p l 

n+m-1 . l ( l) + ?= l : _ ~ n n + 7 - pi(l _ p)n+m-1-i 
1=n _ 

The expected number of flips to obtain either n heads or 
m tails, E[min{X, Y)], is now given by 

E[min(X, Y)] = E[X + Y - M] = ~ + -1 m - E[M] 
p - p 

27. This is just the expected time to collect n - 1 of the 
n types of coupons in Example 2i. By the results of that 
example the solution is 

n n n 
l+--1+--2+ ... +-2 n- n-

The result now follows because E[I]=P{I 
l}=P{Z<X}. 

= 28. With q = 1 - p, 

oo n n 1 n 
(c) Since X - Z is normal with meanµ, and variance 2, we E[X] = L P{X;;::: i} = L P{X;;::: i} = L qi-1 = - q 
have i=l i=l i=l p 

P{X > Z} = P{X - Z > 0} 

=P > -{x - z - µ, -µ,} 
./2 ./2 

=1 - <I>(~) 

=<I>(~) 
26. Let N be the number of heads in the first n + m - 1 
flips. Let M = max{X, Y) be the number of flips needed to 
amass at least n heads and at least m tails. Conditioning on 
N gives 

E[M] = LE[MIN = i]P{N = i} 
i 

n-1 n+m-1 
= L:E[MIN = i]P{N = i} + L E[MIN = i]P{N = i} 

i=O i=n 

29. Cov(X, Y) = E[XY] - E[X]E[Y] 

= P(X = 1, Y = 1) - P(X = l)P(Y = 1) 

Hence, 

Cov(X, Y) = 0 <=> P(X = 1, Y = 1) = P(X = l)P(Y = 1) 

Because 

Cov(X, Y) = Cov(l - X, 1 - Y) = -Cov(l - X, Y) 

= -Cov(X, 1 - Y) 

the preceding shows that all of the following are equivalent 
when X and Y are Bernoulli: 

1. Cov(X, Y) = 0 
2. P(X = 1, Y = 1) = P(X = l)P(Y = 1) 
3. P(l -X = 1, 1- Y = 1) =P(l -X = l)P(l - Y = 1) 
4. P(l - X = 1, Y = 1) = P(l - X = l)P(Y = 1) 
5. P(X=l,l - Y=l)=P(X=l)P(l - Y=l) 
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30. Number the individuals, and let Xij equal 1 if the jth 31. Letting a} and aJ be, respectively, the variances of X 
individual who has hat size i chooses a hat of that size, and and of Y, we obtain, upon squaring both sides, the equiva
let Xij equal 0 otherwise. Then the number of individuals lent inequality 
who choose a hat of their size is 

r n; 

X=LLXij 
i=1 j=l 

Hence, 

Var(X + Y) :5 a} + aJ + 2axay 

Using that Var(X + Y) = a} + aJ + 2Cov(X, Y), the 
preceding inequality becomes 

Cov(X, Y) 
Corr(X, Y) = :S 1 

<Ix<Iy 

which has already been established. 

32. Take expectations, using that the expected value of a 
sum is the sum of the expectations, and then differentiate. 
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Introduction 
The most important theoretical results in probability theory are limit theorems. Of 
these, the most important are those classified either under the heading laws of large 
numbers or under the heading central limit theorems. Usually, theorems are consid
ered to be laws of large numbers if they are concerned with stating conditions under 
which the average of a sequence of random variables converges (in some sense) to 
the expected average. By contrast, central limit theorems are concerned with deter
mining conditions under which the sum of a large number of random variables has a 
probability distribution that is approximately normal. 

2 Chebyshev's Inequality and the Weak Law of Large Numbers 

Proposition 
2.1 

We start this section by proving a result known as Markov's inequality. 

Markov's inequality 

If X is a random variable that takes only nonnegative values, then for any value 
a> 0, 

Proof For a > 0, let 

and note that, since X ~ 0, 

P{X ~ a} ::5 E[X] 
a 

I_ {1 if X ~a 
- 0 otherwise 

x 
I ::5 -

a 

From Chapter 8 of A First Course in Probability, Ninth Edition. Sheldon Ross. 
Copyright© 2014 by Pearson Education, Inc. All rights reserved. 
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Proposition 
2.2 

Example 
2a 

Limit Theorems 

Taking expectations of the preceding inequality yields 

E[I] s E[X] 
a 

which, because E[I] = P{X ~ a}, proves the result. D 

As a corollary, we obtain Proposition 2.2. 

Chebyshev's inequality 

If X is a random variable with finite mean µ, and variance a 2, then for any value 
k > 0, 

a2 
P{IX - µ,I ~ k} s k2 

Proof Since (X - µ,)2 is a nonnegative random variable, we can apply Markov's 
inequality (with a= k2) to obtain 

P{(X - µ,}2 ~ k2} s E[(X k~ µ,)2] (2.1) 

But since (X - µ,) 2 ~ k2 if and only if IX - µ,I ~ k, Equation (2.1) is equivalent to 

E[(X 11)2] a 2 
P{IX - µ,I ~ k} s k~ ,,. = k2 

and the proof is complete. D 

The importance of Markov's and Chebyshev's inequalities is that they enable 
us to derive bounds on probabilities when only the mean or both the mean and the 
variance of the probability distribution are known. Of course, if the actual distribu
tion were known, then the desired probabilities could be computed exactly and we 
would not need to resort to bounds. 

Suppose that it is known that the number of items produced in a factory during a 
week is a random variable with mean 50. 

(a) What can be said about the probability that this week's production will 
exceed 75? 

(b) If the variance of a week's production is known to equal 25, then what can 
be said about the probability that this week's production will be between 40 
and 60? 

Solution Let X be the number of items that will be produced in a week. 

(a) By Markov's inequality, 

E[X] 50 2 
P{X > 75} s -- = - = -

75 75 3 

(b) By Chebyshev's inequality, 

Hence, 

a 2 1 
P{IX - 501~10} s - 2 = -

10 4 

1 3 
P{IX - 501 < 10} ~ 1 - "4 = "4 

so the probability that this week's production will be between 40 and 60 is at 
least .75. • 



Example 
2b 

Limit Theorems 

As Chebyshev's inequality is valid for all distributions of the random variable 
X, we cannot expect the bound on the probability to be very close to the actual 
probability in most cases. For instance, consider Example 2b. 

If X is uniformly distributed over the interval (0, 10), then, since E[X] = 5 and 
Var(X) = ¥-, it follows from Chebyshev's inequality that 

25 
P{IX - 51 > 4} :5 3(16) r:::;; .52 

whereas the exact result is 

P{IX - 51 > 4} = .20 

Thus, although Chebyshev's inequality is correct, the upper bound that it provides is 
not particularly close to the actual probability. 

Similarly, if X is a normal random variable with mean µ, and variance a 2, 
Chebyshev's inequality states that 

1 
P{IX - µ,I > 2a} :::; -

4 

whereas the actual probability is given by 

Chebyshev's inequality is often used as a theoretical tool in proving results. This 
use is illustrated first by Proposition 2.3 and then, most importantly, by the weak law 
of large numbers. 

Proposition If Var(X) = 0, then 
2.3 P{X = E[X]} = 1 

Theorem 
2.1 

In other words, the only random variables having variances equal to 0 are those that 
are constant with probability 1. 

Proof By Chebyshev's inequality, we have, for any n ;:::: 1, 

Letting n-HX! and using the continuity property of probability yields 

0 = n~oo P {IX - µ,I > ~} = P I n~oo {IX - µ,I > ~}} 

and the result is established. 

The weak law of large numbers 

= P{X #- µ,} 

0 

LetX1,X2, ... be a sequence ofindependent and identically distributed random vari
ables, each having finite mean E[Xi] = µ,. Then, for any e > 0, 
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Proof We shall prove the theorem only under the additional assumption that the 
random variables have a finite variance 0' 2• Now, since 

[ X1 + .. · + Xn J (X1 + .. · + Xn) 0'2 
E = µ and Var = -

n n n 

it follows from Chebyshev's inequality that 

P {I X1 + .. · + Xn I } a 2 
n - µ ==: e :s; ne2 

and the result is proven. 0 

The weak law of large numbers was originally proven by James Bernoulli for 
the special case where the Xi are 0, 1 (that is, Bernoulli) random variables. His 
statement and proof of this theorem were presented in his book Ars Conjectandi, 
which was published in 1713, eight years after his death, by his nephew Nicholas 
Bernoulli. Note that because Chebyshev's inequality was not known in Bernoulli's 
time, Bernoulli had to resort to a quite ingenious proof to establish the result. The 
general form of the weak law of large numbers presented in Theorem 2.1 was proved 
by the Russian mathematician Khintchine. 

3 The Central Limit Theorem 

Theorem 
3.1 

Lemma 
3.1 

The central limit theorem is one of the most remarkable results in probability theory. 
Loosely put, it states that the sum of a large number of independent random vari
ables has a distribution that is approximately normal. Hence, it not only provides 
a simple method for computing approximate probabilities for sums of independent 
random variables, but also helps explain the remarkable fact that the empirical fre
quencies of so many natural populations exhibit bell-shaped (that is, normal) curves. 

In its simplest form, the central limit theorem is as follows. 

The central limit theorem 

Let X1, X2, ... be a sequence of independent and identically distributed random vari
ables, each having mean µ and variance 0'2• Then the distribution of 

X1 + ··· + Xn - nµ 

a.jn 

tends to the standard normal as n-+oo. That is, for -oo < a < oo, 

P :s; a -+-- e dx as { X1 + · .. + Xn - nµ } 1 la -x2/2 

(1 Jn ./2ii -oo 
n-+oo 

The key to the proof of the central limit theorem is the following lemma, which 
we state without proof. 

Let Zi.Z2, ... be a sequence of random variables havipg distribution functions Fzn 
and moment generating functions Mzn,n ==: 1, and let Z be a random variable having 
distribution function Fz and moment generating function Mz. If Mzn(t}-+ 
Mz(t) for all t, then Fzn (t)-+ Fz(t) for all tat which Fz(t) is continuous. 

If we let Z be a standard normal random variable, then, since Mz(t) = ei2f2 , 

it follows from Lemma 3.1 that if Mzn (t)-+ eil 12 as n-+ oo, then Fzn (t)-+ <l>(t) as 
n-+oo. 

We are now ready to prove the central limit theorem. 
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Proof of the Central Limit Theorem: Let us assume at first that µ, = 0 and <1 2 = 1. 
We shall prove the theorem under the assumption that the moment generating func
tion of the Xi,M(t), exists and is finite. Now, the moment generating function of 
Xi/ Jn is given by 

Thus, the moment generating function of iti Xi/ .jii, is given by [ M (Jn) r. Let 

L(t) = logM(t) 

and note that 

L(O) = 0 

L' (0) = M' (0) 
M(O) 

=µ, 

=0 

L" O _ M(O)M"(O) - [M'(0)]2 

( ) - [M(0)]2 

= E[X2] 

=1 

Now, to prove the theorem, we must show that [M(t/.jii,)]n--+e1212 as n--+oo, or, 
equivalently, that nL(t/ .jii,)--+ t2 /2 as n--+ oo. To show this, note that 

1. L(t/ ./ii.) 1. -L' (t/ .jii,)n-3f2t 
Im = Im by L'Hopital's rule 

n--+oo n-1 n--+oo -zn-2 

= lim [L'(t/.jii,)t] 
n--+oo zn-1/2 

. [-L"(t/./ii.)n-3f2t2] 
= n~oo -Zn_312 again by L'Hopital's rule 

= lim [L" (-' ) t2] n--+ oo Jn 2 

t2 
=-

2 

Thus, the central limit theorem is proven when µ, = 0 and 0'2 = 1. The result 
now follows in the general case by considering the standardized random variables 
x; =(Xi - µ,)/<1 and applying the preceding result, since E[Xj] = 0, Var(Xj) = 1. 

Remark Although Theorem 3.1 states only that, for each a, 

{ X1 + · .. + Xn - nµ, } 
P '- :5 a --+<l>(a) 

<1vn 

it can, in fact, be shown that the convergence is uniform ina. [We saythatfn(a)--+ f(a) 
uniformly in a if, for each e > 0, there exists an N such that lfn(a) - f(a)I < e for 
all a whenever n :2:: N.] • 
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The first version of the central limit theorem was proven by DeMoivre around 
1733 for the special case where the Xi are Bernoulli random variables with p = i. 
The theorem was subsequently extended by Laplace to the case of arbitrary p. (Since 
a binomial random variable may be regarded as the sum of n independent and identi
cally distributed Bernoulli random variables, this justifies the normal approximation 
to the binomial.) Laplace also discovered the more general form of the central limit 
theorem given in Theorem 3.1. His proof, however, was not completely rigorous and, 
in fact, cannot easily be made rigorous. A truly rigorous proof of the central limit 
theorem was first presented by the Russian mathematician Liapounoff in the period 
1901-1902. 

Figure 1 illustrates the central limit theorem by plotting the probability mass 
functions of n independent random variables having a specified mass function when 
(a) n = 5, (b) n = 10, (c) n = 25, and (d) n = 100. 

An astronomer is interested in measuring the distance, in light-years, from his obser
vatory to a distant star. Although the astronomer has a measuring technique, he 
knows that because of changing atmospheric conditions and normal error, each time 
a measurement is made, it will not yield the exact distance, but merely an estimate. 
As a result, the astronomer plans to make a series of measurements and then use the 
average value of these measurements as his estimated value of the actual distance. 
If the astronomer believes that the values of the measurements are independent 
and identically distributed random variables having a common mean d (the actual 

~ Central Limit Theorem (iill 

p(i) 

Enter the probabilities and the number of random 
variables to be summed. The output gives the mass 
function of the sum along with its mean and 
variance. 

PO 1. 25 
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Figure l(a) 
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II Central Limit Theorem 1111 

p(i) 

Enter the probabil i ties and the number of random 
variables to be swnrned. The output gives the mass 
function of the sum along with its mean and 
variance. 

PO .25 [ Start 
Pl .15 

P2 .1 

P3 . 2 Ir Quit ] 
P4 .3 

n = 10 

Mean = 21. 5 

Variance = 25.275 

0.08 

0.06 

0.04 x 
x 

0.02 x 

0.00 =~·x.Xx 
xx 

0 10 20 30 

i 

Figure l(b) 

40 

distance) and a common variance of 4 (light-years), how many measurements need 
he make to be reasonably sure that his estimated distance is accurate to within ±.5 
light-year? 

Solution Suppose that the astronomer decides to make n observations. If X1, 

X2, . . . , Xn are the n measurements, then, from the central limit theorem, it 
follows that 

n 

L:xi - nd 
z - _i=_l ___ _ 

n - 2.Jri. 

has approximately a standard normal distribution. Hence, 

P{-.5,, ~X; -d>'.5}=P{-5~>'Zn>'5~1 
~ ¢ ( ~) ~ (-~) = 2¢ ( ~) - 1 

Therefore, if the astronomer wants, for instance, to be 95 percent certain that his 
estimated value is accurate to within .5 light-year, he should make n* measurements, 
where n* is such that 
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Ill Central Limil Theorem 1111 

p(i) 

Thus, 

Enter the probabilities and the number of random 
variables to be summed . The output gives the mass 
function of the sum along with its mean and 
variance . 
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n = 251 

Mean = 53.75 
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Figure l(c) 

(.Jn*) 2<1> 4 - 1 = .95 

.Jn*= 1.96 
4 

or 

or (.Jn*) <t> -4- = .975 

n* = (7.84)2 ~ 61.47 

As n* is not integral valued, he should make 62 observations. 

100 

Note, however, that the preceding analysis has been done under the assumption 
that the normal approximation will be a good approximation when n = 62. Although 
this will usually be the case, in general the question of how large n need be before 
the approximation is "good" depends on the distribution of the Xi. If the astronomer 
is concerned about this point and wants to take no chances, he can still solve his 
problem by using Chebyshev's inequality. Since 

E[t~i] =d 
1=1 

( 
n X·) 4 

Var t;-;f = n 



Example 
Jb 

Limit Theorems 

Ill Central Limit Theorem 1111 
Enter the probabilities and the number of random 
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Figure I (d) 

Chebyshev's inequality yields 

{ 
n X · } 4 16 

p ". _n1 - d > .5 :5 = ~ n(.5)2 n 
1=1 

Hence, if he makes n = 16/.05 = 320 observations, he can be 95 percent certain that 
his estimate will be accurate to within .5 light-year. • 

The number of students who enroll in a psychology course is a Poisson random vari
able with mean 100. The professor in charge of the course has decided that if the 
number enrolling is 120 or more, he will teach the course in two separate sections, 
whereas if fewer than 120 students enroll, he will teach all of the students together 
in a single section. What is the probability that the professor will have to teach two 
sections? 

Solution The exact solution 

does not readily yield a numerical answer. However, a Poisson random variable 
with mean 100 is the sum of 100 independent Poisson random variables, each with 
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mean 1, thus we ~n make use of the central limit theorem to obtain an approxi
mate solution. If X denotes the number of students who enroll in the course, we 
have 

P{X ~ 120} = P{X ~ 119.5} (the continuity correction) 

= p { x - 100 ~ 119.5 - 100} 
~ ~ 

R:J 1 - <I> (1. 95) 

R:J .0256 

where we have used the fact that the variance of a Poisson random variable is equal 
to its mean. • 

If 10 fair dice are rolled, find the approximate probability that the sum obtained is 
between 30 and 40, inclusive. 

Solution Let Xi denote the value of the ith die, i = 1, 2, ... , 10. Since 

7 ~ 
E(Xi) = 2, Var(Xi) = E[Xf] - (E[Xi])2 = 12, 

the central limit theorem yields 

P{29.5 s X:::;; 40.5} = p { 29"/i:-35 ,; X~5 ,; 40"/i:-35} 
12 12 12 

R:J 2<1>(1.0184) - 1 

R:J .692 • 
Let Xi, i = 1, ... , 10, be independent random variables, each uniformly distributed 

over (0, 1). Calculate an approximation to P {~Xi > 6}. 
1=1 

Solution Since E[X;] = ! and Var{X;) = i\, we have, by the central limit theorem, 

10 

10 

{ 
10 } _Exi - s 

P ~Xt > 6 ~P )rn(i~) > 

R:J 1 - <1>< Jf.2) 

R:J .1367 

6 - 5 

Hence, L: Xi will be greater than 6 only 14 percent of the time. 
i=l • 
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An instructor has 50 exams that will be graded in sequence. The times required to 
grade the 50 exams are independent, with a common distribution that has mean 
20 minutes and standard deviation 4 minutes. Approximate the probability that the 
instructor will grade at least 25 of the exams in the first 450 minutes of work. 

Solution If we let Xi be the time that it takes to grade exam i, then 

25 

X=LXi 
i=l 

is the time it takes to grade the first 25 exams. Because the instructor will grade at 
least 25 exams in the first 450 minutes of work if the time it takes to grade the first 25 
exams is less than or equal to 450, we see that the desired probability is P{X :5 450}. 
To approximate this probability, we use the central limit theorem. Now, 

and 

25 

E[X] = L E[Xi] = 25(20) = 500 
i=l 

25 

Var(X) = L Var(Xi) = 25(16) = 400 
i=l 

Consequently, with Z being a standard normal random variable, we have 

p x :5 450 = p { x _ 500 :5 450 _ 500 I 
{ } ,J400 ,J400 

:::::: P{Z :5 -2.5} 

= P{Z;::: 2.5} 

= 1 - <1>(2.5) ~ .006 • 
Central limit theorems also exist when the Xi are independent, but not neces

sarily identically distributed random variables. One version, by no means the most 
general, is as follows. 

Central limit theorem for independent random variables 

Let X1,X2, ... be a sequence of independent random variables having respective 
means and variances JLi = E[Xi],al = Var(Xi). If (a) the Xi are uniformly 

00 

bounded-that is, iffor some M,P{IXil < M}=l for all i, and (b) L a?=oo-then 
i=l 

p i=l 
----- :5 a -+<I>(a) as n-+ oo 

j~af 
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Historical note 

Pierre-Simon, Marquis de Laplace 
The central limit theorem was originally stated and proven by the French math
ematician Pierre-Simon, Marquis de Laplace, who came to the theorem from 
his observations that errors of measurement (which can usually be regarded 
as being the sum of a large number of tiny forces) tend to be normally dis
tributed. Laplace, who was also a famous astronomer (and indeed was called 
"the Newton of France"), was one of the great early contributors to both prob
ability and statistics. Laplace was also a popularizer of the uses of probability 
in everyday life. He strongly believed in its importance, as is indicated by the 
following quotations taken from his published book Analytical Theory of Prob
ability: "We see that the theory of probability is at bottom only common sense 
reduced to calculation; it makes us appreciate with exactitude what reasonable 
minds feel by a sort of instinct, often without being able to account for it. ... It is 
remarkable that this science, which originated in the consideration of games of 
chance, should become the most important object of human knowledge.. . . The 
most important questions of life are, for the most part, really only problems of 
probability." 

The application of the central limit theorem to show that measurement 
errors are approximately normally distributed is regarded as an important con
tribution to science. Indeed, in the seventeenth and eighteenth centuries, the 
central limit theorem was often called the law of frequency of errors. Listen to 
the words of Francis Galton (taken from his book Natural Inheritance, published 
in 1889): "I know of scarcely anything so apt to impress the imagination as the 
wonderful form of cosmic order expressed by the 'Law of Frequency of Error.' 
The Law would have been personified by the Greeks and deified, if they had 
known of it. It reigns with serenity and in complete self-effacement amidst the 
wildest confusion. The huger the mob and the greater the apparent anarchy, the 
more perfect is its sway. It is the supreme law of unreason.'' 

4 The Strong Law of Large Numbers 

Theorem 
4.1 

The strong law of large numbers is probably the best-known result in probability 
theory. It states that the average of a sequence of independent random variables 
having a common distribution will, with probability 1, converge to the mean of that 
distribution. 

The strong law of large numbers 

Let X1, X2, ... be a sequence of independent and identically distributed random vari
ables, each having a finite meanµ,= E(Xi]. Then, with probability 1, 

as 
n 

As an application of the strong law of large numbers, suppose that a sequence 
of independent trials of some experiment is performed. Let Ebe a fixed event of the 

tThat is, the strong law of large numbers states that 

P{ fun (X1 + · · · + Xn)/n = µ} = 1 
n~oo 
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experiment, and denote by P(E) the probability that E occurs on any particular trial. 
Letting 

X _ { 1 if E occurs on the ith trial 
1 - 0 if E does not occur on the ith trial 

we have, by the strong law of large numbers, that with probability 1, 

X1 + ··· + Xn ~E[X] =P(E) 
n 

(4.1) 

Since X1 + · · · + Xn represents the number of times that the event E occurs in the 
first n trials, we may interpret Equation (4.1) as stating that with probability 1, the 
limiting proportion of time that the event E occurs is just P(E). 

Although the theorem can be proven without this assumption, our proof of the 
strong law of large numbers will assume that the random variables Xi have a finite 
fourth moment. That is, we will suppose that E[Xf] = K < oo. 

Proof of the Strong Law of Large Numbers: To begin, assume that µ,, the mean 
n 

of the Xi, is equal to 0. Let Sn = EX; and consider 
i=l 

E[s!] = E[(X1 + · · · + Xn)(X1 + · · · + Xn) 

X (X1 + · · · + Xn)(X1 + · · · + Xn)] 

Expanding the right side of the preceding equation results in terms of the form 

and 

where i, j, k, and l are all different. Because all the Xi have mean 0, it follows by 
independence that 

E[X/ Xj] = E[XlJE[X;] = 0 

E[Xf XjXk] = E[Xf]E[X;]E[Xk] = 0 

E[XiXjXkXL] = 0 

Now, for a given pair i andj, there will be ( ~) = 6 terms in the expansion that will 

equal Xf Xl. Hence, upon expanding the preceding product and taking expectations 
term by term, it follows that 

E[s!] = nE[Xf] + 6 ( ~) E[Xf Xj2] 

= nK + 3n(n - l)E[Xf ]E[Xj2] 

where we have once again made use of the independence assumption. Now, since 

0 ~ Var(Xf) = E[Xf] - (E[Xf ])2 

we have 
(E[Xf])2 ~ E[xf] = K 

Therefore, from the preceding, we obtain 

E[s!] ~ nK + 3n(n - l)K 
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which implies that 

E[Si,] ::5 K + 3K 
n4 n3 n2 

Therefore, 

00 

But the preceding implies that with probability 1, L Si,/n4 < oo. (For if there is a 
n=l 

positive probability that the sum is infinite, then its expected value is infinite.) But 
the convergence of a series implies that its nth term goes to O; so we can conclude 
that with probability 1, 

l. Si, 0 Im-= n-+oo n4 

But if Si,/n4 = (Sn/n)4 goes to 0, then so must Sn/n; hence, we have proven that with 
probability 1, 

Sn--+ 0 
n 

as n-+oo 

Whenµ,, the mean of the Xi. is not equal to 0, we can apply the preceding argu
ment to the random variables Xi - µ, to obtain that with probability 1, 

lim ~ (Xi - µ,) = O 
n-+oo~ n 

i=l 

II Strong Law of Large Numbers Riii 

0 

15 
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II Strong Law of Large Numbers 1111 

0 

Enter the probabilities and the number of trials 
to be simulated . The output gives the total number 
of times each outcome occurs , and the average 
of all outcomes . 

PO .1 r =] Start 
Pl .2 

P2 . 3 

IT ~ 1 P3 . 35 Quit 

P4 . 05 

n = 110001 

Theoretical Mean = 2.05 

Sample Mean= 2.078 

--1 2 3 

106 189 285 361 

or, equivalently, 

Figure 2(b) 

n X· 
Jim '°" _!:. = µ, n---+oo~ n 

i=l 

4 

59 

which proves the result. D 
Figure 2 illustrates the strong law by giving the results of a simulation of n inde

pendent random variables having a specified probability mass function. The averages 
of the n variables are given when (a) n = 100, (b) n = 1000, and ( c) n = 10, 000. 

Many students are initially confused about the difference between the weak and 
the strong laws of large numbers. The weak law of large numbers states that for any 
specified large value n*, (X1 + · · · + Xn• )/n* is likely to be nearµ, . However, it does 
not say that (X1 + · · · + Xn)/n is bound to stay nearµ, for all values of n larger than 
n*. Thus, it leaves open the possibility that large values of l(X1 + · · · + Xn)/n - µI 
can occur infinitely often (though at infrequent intervals). The strong law shows that 
this cannot occur. In particular, it implies that, with probability 1, for any positive 
value e, 

n X· I:_!:. - µ, 
1 n 

will be greater than e only a finite number of times. 
The strong law of large numbers was originally proven, in the special case of 

Bernoulli random variables, by the French mathematician Borel. The general form 
of the strong law presented in Theorem 4.1 was proven by the Russian mathemati
cian A. N. Kolmogorov. 
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Strong Law of Large Numbers 1111 
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5 Other Inequalities 

Proposition 
S.I 

We are sometimes confronted with situations in which we are interested in obtain
ing an upper bound for a probability of the form P{X - µ, 2:: a}, where a is some 
positive value and when only the mean µ, = E[X] and variance a 2 = Var(X) of the 
distribution of X are known. Of course, since X - µ, 2:: a > 0 implies that IX - µ,I 2:: a, 
it follows from Chebyshev's inequality that 

a2 
P{X - µ, 2:: a} :5 P{IX - µI 2:: a} :5 2 when a > 0 

a 

However, as the following proposition shows, it turns out that we can do better. 

One-sided Chebyshev inequality 

If X is a random variable with mean 0 and finite variance a 2 , then, for any a > 0, 
a2 

P{X 2:: a} :::; 2 2 
a +a 

Proof Let b > 0 and note that 

X 2:: a is equivalent to X + b 2:: a + b 

Hence, 

P{X 2:: a}= P{X + b 2:: a + b} 

:5 P{(X + b)2 2:: (a + b)2} 
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where the inequality is obtained by noting that since a + b > 0, X + b ;;;::: a + b 
implies that (X + b)2 ;;;::: (a + b)2• Upon applying Markov's inequality, the 
preceding yields that 

E[(X + b)2] a 2 + b2 
P{X;;;::: a} s; (a + b)2 = (a + b)2 

Letting b = a 2 fa [which is easily seen to be the value of b that minimizes 
(a2 + b2)/(a + b)2] gives the desired result. D 

If the number of items produced in a factory during a week is a random variable 
with mean 100 and variance 400, compute an upper bound on the probability that 
this week's production will be at least 120. 

Solution It follows from the one-sided Chebyshev inequality that 

400 1 
P{X ;;;::: 120} = P{X - 100 ;;;::: 20} s; 400 + (20)2 = 2: 

Hence, the probability that this week's production will be 120 or more is at most i· 
If we attempted to obtain a bound by applying Markov's inequality, then we 

would have obtained 
E(X) 5 

P{X ;;;::: 120} s; -- = -
120 6 

which is a far weaker bound than the preceding one. • 
Suppose now that X has meanµ, and variance a 2. Since both X - µ, andµ, - X 

have mean 0 and variance a 2, it follows from the one-sided Chebyshev inequality 
that, for a > 0, 

a2 
P{X - µ, ;;;::: a} s; 2 2 

a +a 

and 
a2 

P{µ, - X ;;;::: a} s; 2 2 
a +a 

Thus, we have the following corollary. 

If E[X] = µ, and Var(X) = a 2, then, for a > 0, 

a2 
P{X ;;;::: µ, + a} s; 2 2 

a +a 
a2 

P{X s; µ, - a} s; 2 2 
a +a 

A set of 200 people consisting of 100 men and 100 women is randomly divided into 
100 pairs of 2 each. Give an upper bound to the probability that at most 30 of these 
pairs will consist of a man and a woman. 

Solution Number the men arbitrarily from 1 to 100, and for i = 1, 2, ... 100, let 

X _ { 1 if man i is paired with a woman 
1 - 0 otherwise 

413 



414 

Limit Theorems 

Then X, the number of man-woman pairs, can be expressed as 

Because man i is equally likely to be paired with any of the other 199 people, of 
which 100 are women, we have 

Similarly, for i '* j, 

100 
E[Xi] = P{Xi = 1} = -

199 

E[XiX;] = P{Xi = l,X; = l} 
100 99 = P{Xi = l}P{X; = llXi = 1} = 199197 

where P{X; = llXi = 1} = 99/197, since, given that man i is paired with a woman, 
man j is equally likely to be paired with any of the remaining 197 people, of which 
99 are women. Hence, we obtain 

100 

E[X] = L E[Xi] 

100 
= (lOO) 199 

~ 50.25 
100 

Var(X) = L Var(Xi) + 2 LL Cov(Xi,Xj) 
i=l i<j 

= 100100 99 2 ( 100) [100 ~ - (100)2] 
199 199 + 2 199 197 199 

~ 25.126 

The Chebyshev inequality then yields 

P{X :s; 30} :s; P{IX - 50.251 ~ 20.25} :s; 25·126
2 ~ .061 

(20.25) 

Thus, there are fewer than 6 chances in 100 that fewer than 30 men will be paired with 
women. However, we can improve on this bound by using the one-sided Chebyshev 
inequality, which yields 

P{X :s; 30} = P{X :s; 50.25 - 20.25} 

25.126 
:s; --------=-

25.126 + (20.25)2 
~ .058 • 

When the moment generating function of the random variable X is known, we 
can obtain even more effective bounds on P{X ~ a}. Let 
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be the moment generating function of the random variable X. Then, for t > 0, 

P{X ~ a} = P{etX :=::: eta} 

Similarly, fort < 0, 

:5 E[etX]e-ta by Markov's inequality 

P{X :5 a}= P{etX ::::: eta} 

:5 E[etX]e-ta 

Thus, we have the following inequalities, known as Chernoff bounds. 

Proposition Chernoff bounds 
5.2 

Example 
Sc 

Example 
5d 

P{X ::::: a} :5 e-ta M(t) for all t > 0 

P{X :5 a} :5 e-ta M(t) for all t < 0 

Since the Chernoff bounds hold for all t in either the positive or negative quadrant, 
we obtain the best bound on P{X ::::: a} by using the t that minimizes e-ta M(t). 

Chernoff bounds for the standard normal random variable 

If Z is a standard normal random variable, then its moment generating function is 
M(t) = ei2fZ, so the Chernoff bound on P{Z ::::: a} is given by 

P{Z ::::: a} :5 e-taet212 for all t > 0 

Now the value oft, t > 0, that minimizes et2 /Z-ta is the value that minimizes t2 /2 - ta, 
which is t = a. Thus, for a > 0, we have 

P{Z::::: a} :5 e-a2f2 

Similarly, we can show that, for a < 0, 

P{Z :5 a} :5 e-a2f2 • 
Chernoff bounds for the Poisson random variable 

If X is a Poisson random variable with parameter A, then its moment generating 
function is M(t) = t?-Ce'-l). Hence, the Chernoff bound on P{X ::::: i} is 

P{X ::::: i} :5 eJ..Ce'-l)e-it t > 0 

Minimizing the right side of the preceding inequality is equivalent to minimizing 
J.(et - 1) - it, and calculus shows that the minimal value occurs when et = i/J.. 
Provided that i/J. > 1, this minimizing value oft will be positive. Therefore, assuming 
that i > A and letting e1 = i/J. in the Chernoff bound yields 

P{X ::::: i} :5 ~Ci/A.-l) (~ y 
or, equivalently, 

e-J..(eJ.)i 
P{X ::::: i} :5 ·i 

l • 
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Consider a gambler who is equally likely to either win or lose 1 unit on every play, 
independently of his past results. That is, if X; is the gambler's winnings on the ith 
play, then the X; are independent and 

n 

1 
P{X; = 1} = P{X; = -1} = -

2 

Let Sn = L X; denote the gambler's winnings after n plays. We will use the Chernoff 
i=l 

bound on P{Sn ~ a}. To start, note that the moment generating function of X; is 

Now, using the McLaurin expansions of e' and e-t, we see that 

Therefore, 

Since the moment generating function of the sum of independent random variables 
is the product of their moment generating functions, we have 

E[e'Sn] = (E[etX])n 

s ~t2/2 

Using the preceding result along with the Chernoff bound gives 

The value of t that minimizes the right side of the preceding is the value that min
imizes nt2 /2 - ta, and this value is t = a/n. Supposing that a > 0 (so that the 
minimizing tis positive) and letting t = a/n in the preceding inequality yields 

This latter inequality yields, for example, 

P{S10 ~ 6} s e-'36/ZO ::::i .1653 



Limit Theorems 

whereas the exact probability is 

P{S10 ~ 6} = P{gambler wins at least 8 of the first 10 games} 

( iso ) + ( ~o ) + ( i~ ) 56 

= 210 = 1024 R! .0547 • 
The next inequality is one having to do with expectations rather than probabili

ties. Before stating it, we need the following definition. 

Definition 

A twice-differentiable real-valued functionf(x) is said to be convex iff"(x) ~ 0 
for all x; similarly, it is said to be concave if f" (x) ::5 0. 

Some examples of convex functions are f(x) = x2 ,f(x) = tf'X, andf(x) = -x1fn 
for x ~ 0. Iff(x) is convex, then g(x) = -f(x) is concave, and vice- versa. 

Proposition Jensen's inequality 
5.3 

Example 
Sf 

If f (x) is a convex function, then 

E[f (X)] ~ f (E[X]) 

provided that the expectations exist and are finite. 

Proof Expandingf(x) in a Taylor's series expansion aboutµ= E[X] yields 

f(x) =f(µ) + f'(µ)(x - µ) + f"(g)(x2 - µ) 2 

where g is some value between x and µ. Since f" (g) ~ 0, we obtain 

f(x) ~ f(µ) + f'(µ)(x - µ) 

Hence, 

f(X) ~ f(µ) + f'(µ)(X - µ) 

Taking expectations yields 

E[f(X)] ~ f(µ) + f'(µ)E[X - µ] =f(µ) 

and the inequality is established. D 

An investor is faced with the following choices: Either she can invest all of her money 
in a risky proposition that would lead to a random return X that has mean m, or 
she can put the money into a risk-free venture that will lead to a return of m with 
probability 1. Suppose that her decision will be made on the basis of maximizing 
the expected value of u(R), where R is her return and u is her utility function. By 
Jensen's inequality, it follows that if u is a concave function, then E[u(X)] ::5 u(m), 
so the risk-free alternative is preferable, whereas if u is convex, then E[u(X)] ~ u(m), 
so the risky investment alternative would be preferred. • 
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6 Bounding the Error Probability When Approximating a Sum of 
Independent Bernoulli Random Variables by a Poisson Random 
Variable 

In this section, we establish bounds on how closely a sum of independent Bernoulli 
random variables is approximated by a Poisson random variable with the same mean. 
Suppose that we want to approximate the sum of independent Bernoulli random 
variables with respective means p1,pz, ...• Pn· Starting with a sequence Y1, ... , Yn 
of independent Poisson random variables, with Y; having mean p;, we will construct 
a sequence of independent Bernoulli random variables X1, ... , Xn with parameters 
p1, ... ,pn such that 

for each i 

n n 
Letting X = L: Xi and Y = L: Y;, we will use the preceding inequality to con-

i=l i=l 
elude that 

n 

P{X ,,;: Y} :5 L PT 
i=l 

Finally, we will show that the preceding inequality implies that for any set of real 
numbers A, 

n 

IP{X EA} - P{Y E A}I ::5 L PT 
i=l 

Since X is the sum of independent Bernoulli random variables and Y is a Poisson 
random variable, the latter inequality will yield the desired bound. 

To show how the task is accomplished, let Y;, i = 1, ... , n be independent Pois
son random variables with respective means Pi· Now let U1, ... , Un be independent 
random variables that are also independent of the Y;'s and are such that 

U· = {O w~th probab~l~ty (1 - Pi)ePi 
1 1 with probab1hty 1 - (1 - Pi)ef'i 

This definition implicitly makes use of the inequality 

in assuming that (1 - p;)ePi :5 1. 
Next, define the random variables X;, i = 1, ... , n, by 

Note that 

X _ {O if Y; = U; = 0 
1 - 1 otherwise 

P{X; = 0} = P{Yi = O}P{Ui = 0} = e-Pi(l - Pi)e/Ji = 1 - Pi 

P{Xi = 1} = 1 - P{X; = 0} =Pi 
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Now, if Xi is equal to 0, then so must Yi equal 0 (by the definition of Xi)· Therefore, 

P{Xi '*- Yi}= P{Xi = 1, Yi '*- 1} 

= P{Yi = O,Xi = 1} + P{Yi > l} 

= P{Yi = 0, Ui = 1} + P{Yi > l} 

= e-P;[l - (1 - Pi)e/Ji] + 1 - e-P; - Pie-Pi 

=Pi - Pie-Pi 

:5 pf (since 1 - e-P :5 p) 

n n 
Now let X = L Xi and Y = L Yi, and note that X is the sum of independent 

i=l i=l 
Bernoulli random variables and Y is Poisson with the expected value E[Y] = E[X] = 
n 
L Pi· Note also that the inequality X -:F- Y implies that Xi -:F- Yi for some i, so 
i=l 

P{X -:F- Y} :5 P{Xi -:F- Yi for some i} 

(Boole's inequality) 
i=l 

For any event B, let IB, the indicator variable for the event B, be defined by 

{ 
1 if B occurs 

1 B = 0 otherwise 

Note that for any set of real numbers A, 

The preceding inequality follows from the fact that since an indicator variable is 
either 0 or 1, the left-hand side equals 1 only when /{xeA} = 1 and /{YeAJ = 0. But 
this would imply that X E A and Y fj. A, which means that X -:F- Y, so the right side 
would also equal 1. Upon taking expectations of the preceding inequality, we obtain 

P{X EA} - P{Y EA} :5 P{X -:F- Y} 

By reversing X and Y, we obtain, in the same manner, 

P{Y EA} - P{X EA} :5 P{X -:F- Y} 

Thus, we can conclude that 

IP{X EA} - P{Y E A}I :5 P{X -:F- Y} 

n 
Therefore, we have proven that with ).. = L Pi, 

i=l 
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Remark When all the Pi are equal top, X is a binomial random variable. Hence, 
the preceding inequality shows that, for any set of nonnegative integers A, 

Summary 

1\vo useful probability bounds are provided by the 
Markov and Chebyshev inequalities. The Markov inequal
ity is concerned with nonnegative random variables and 
says that for X of that type, 

P{X <== a} s E[X] 
a 

for every positive value a. The Chebyshev inequality, 
which is a simple consequence of the Markov inequality, 
states that if X has meanµ and variance a 2, then, for every 
positive k, 

1 
P{IX - µI <== ka} s k2 

The two most important theoretical results in probability 
are the central limit theorem and the strong law of large 
numbers. Both are concerned with a sequence of inde
pendent and identically distributed random variables. The 
central limit theorem says that if the random variables 
have a finite mean µ and a finite variance a 2, then the 

Problems 

• 

distribution of the sum of the first n of them is, for large 
n, approximately that of a normal random variable with 
mean nµ and variance na2• That is, if Xi, i <== l, is the 
sequence, then the central limit theorem states that for 
every real number a, 

. { X1 + · · · + Xn - nµ } 1 la -x2 /2 hmP Jn sa =PC e dx 
n~oo a n -v2ir -oo 

The strong law of large numbers requires only that the ran
dom variables in the sequence have a finite mean µ. It 
states that with probability 1, the average of the first n of 
them will converge to µ as n goes to infinity. This implies 
that if A is any specified event of an experiment for which 
independent replications are performed, then the limiting 
proportion of experiments whose outcomes are in A will, 
with probability 1, equal P(A). Therefore, if we accept the 
interpretation that "with probability l" means "with cer
tainty," we obtain the theoretical justification for the long
run relative frequency interpretation of probabilities. 

I. Suppose that X-is a random variable with mean and (a) Use the Markov inequality to obtain a bound on 
variance both equal to 20. What can be said about P{O < 
x < 40}? 

2. From past experience, a professor knows that the test 
score of a student taking her final examination is a random 
variable with mean 75. 
(a) Give an upper bound for the probability that a stu
dent's test score will exceed 85. Suppose, in addition, that 
the professor knows that the variance of a student's test 
score is equal to 25. 
(b) What can be said about the probability that a student 
will score between 65 and 85? 
(c) How many students would have to take the examina
tion to ensure with probability at least .9 that the class 
average would be within 5 of 75? Do not use the central 
limit theorem. 

(b) Use the central limit theorem to approximate 

S. Fifty numbers are rounded off to the nearest integer and 
then summed. If the individual round-off errors are uni
formly distributed over (-.5, .5), approximate the proba
bility that the resultant sum differs from the exact sum by 
more than3. 

3. Use the central limit theorem to solve part (c) of Prob-
lem 2. 6. A die is continually rolled until the total sum of all rolls 

exceeds 300. Approximate the probability that at least 80 
4, Let Xi. ... , X20 be independent Poisson random vari- rolls are necessary. 
ables with mean 1. 
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7. A person has 100 light bulbs whose lifetimes are inde
pendent exponentials with mean 5 hours. If the bulbs are 
used one at a time, with a failed bulb being replaced imme
diately by a new one, approximate the probability that 
there is still a working bulb after 525 hours. 

8. In Problem 7, suppose that it takes a random time, uni
formly distributed over (0, .5), to replace a failed bulb. 
Approximate the probability that all bulbs have failed by 
time 550. 

9. If X is a gamma random variable with parameters 
(n, 1), approximately how large must n be so that 

I 0. Civil engineers believe that W, the amount of weight 
(in units of 1000 pounds) that a certain span of a bridge can 
withstand without structural damage resulting, is normally 
distributed with mean 400 and standard deviation 40. Sup
pose that the weight (again, in units of 1000 pounds) of a 
car is a random variable with mean 3 and standard devi
ation .3. Approximately how many cars would have to be 
on the bridge span for the probability of structural damage 
to exceed .1? 

I I. Many people believe that the daily change of price of a 
company's stock on the stock market is a random variable 
with mean 0 and variance cr2 . That is, if Yn represents the 
price of the stock on the nth day, then 

Yn = Yn-1 + Xn n ;;:.: 1 

where X1,X2, ... are independent and identically dis
tributed random variables with mean 0 and variance cr2 . 

Suppose that the stock's price today is 100. If cr2 = 1, what 
can you say about the probability that the stock's price will 
exceed 105 after 10 days? 

12. We have 100 components that we will put in use in a 
sequential fashion. That is, component 1 is initially put in 
use, and upon failure, it is replaced by component 2, which 
is itself replaced upon failure by component 3, and so on. 
If the lifetime of component i is exponentially distributed 
with mean 10 + i/10, i = 1, ... , 100, estimate the proba
bility that the total life of all components will exceed 1200. 
Now repeat when the life distribution of component i is 
uniformly distributed over (0, 20 + i/5), i = 1, ... , 100. 

13. Student scores on exams given by a certain instructor 
have mean 74 and standard deviation 14. This instructor is 
about to give two exams, one to a class of size 25 and the 
other to a class of size 64. 

(a) Approximate the probability that the average test 
score in the class of size 25 exceeds 80. 
(b) Repeat part (a) for the class of size 64. 

( c) Approximate the probability that the average test 
score in the larger class exceeds that of the other class by 
more than 2.2 points. 
(d) Approximate the probability that the average test 
score in the smaller class exceeds that of the other class 
by more than 2.2 points. 

14. A certain component is critical to the operation of an 
electrical system and must be replaced immediately upon 
failure. If the mean lifetime of this type of component is 
100 hours and its standard deviation is 30 hours, how many 
of these components· must be in stock so that the probabil
ity that the system is in continual operation for the next 
2000 hours is at least .95? 

IS. An insurance company has 10,000 automobile poli
cyholders. The expected yearly claim per policyholder is 
$240, with a standard deviation of $800. Approximate the 
probability that the total yearly claim exceeds $2.7 million. 

16. A.J. has 20 jobs that she must do in sequence, with 
the times required to do each of these jobs being indepen
dent random variables with mean 50 minutes and standard 
deviation 10 minutes. M.J. has 20 jobs that he must do in 
sequence, with the times required to do each of these jobs 
being independent random variables with mean 52 min
utes and standard deviation 15 minutes. 

(a) Find the probability that A.J. finishes in less than 900 
minutes. 
(b) Find the probability that M.J. finishes in less than 900 
minutes. 
(c) Find the probability that A.J. finishes before M.J. 

17. Redo Example Sb under the assumption that the num
ber of man-woman pairs is (approximately) normally dis
tributed. Does this seem like a reasonable supposition? 

18. Repeat part (a) of Problem 2 when it is known 
that the variance of a student's test score is equal 
to 25. 

19. A lake contains 4 distinct types of fish. Suppose that 
each fish caught is equally likely to be any one of these 
types. Let Y denote the number of fish that need be caught 
to obtain at least one of each type. 

(a) Give an interval (a, b) such that P{a ~ Y ~ b} 
2: .90. 
(b) Using the one-sided Chebyshev inequality, how many 
fish need we plan on catching so as to be at least 90 percent 
certain of obtaining at least one of each type? 

20. If X is a nonnegative random variable with mean 25, 
what can be said about 

(a) E[X3]? 
(b) E[~]? 
(c) E[log X]? 

(d) E[e-X]? 
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21. Let X be a nonnegative random variable. Prove that 

E[X] s (E[X2])1;2 s (E[X3])1/3 s ... 

22. Would the results of Example Sf change if the investor 
were allowed to divide her money and invest the frac
tion a, 0 < a < 1, in the risky proposition and investthe 
remainder in the risk-free venture? Her return for such a 
split investment would be R = aX + (1 - a)m. 

23. Let X be a Poisson random variable with mean 20. 
(a) Use the Markov inequality to obtain an upper 
bound on 

p = P{X ~ 26} 

Theoretical Exercises 

I. If X has variance a 2, then a, the positive square root 
of the variance, is called the standard deviation. If X has 
mean µ and standard deviation a, show that 

1 
P{IX - µI ~ ka} s k2 

2. If X has mean µ and standard deviation a, the ratio 
r = lµl/a is called the measurement signal-to-noise ratio 
of X. The idea is that X can be expressed as X = µ + 
(X - µ),withµ representing the signal and X - µthe 
noise. Ifwe define l(X - µ)/µI =Das the relative devia
tion of X from its signal (or mean) µ,show that for a > 0, 

1 
P{D s a} ~ 1 - 22" 

ra 

3. Compute the measurement signal-to-noise ratio-that 
is, lµl/a, where ,i = E[X] and a 2 = Var(X)-of the fol
lowing random variables: 

(a) Poisson with mean>..; 
(b) binomial with parameters n and p; 
(c) geometric with mean lip; 
(d) uniform over (a,b); 

(e) exponential with mean l/>..; 
(f) normal with parameters µ, a 2• 

4, Let Zn, n ~ 1, be a sequence of random variables and c 
a constant such that for each e > 0, PflZn - cl > e} ~ 0 as 
n ~ oo. Show that for any bounded continuous function g, 

E[g(Zn)] ~ g(c) as n~oo 

(b) Use the one-sided Chebyshev inequality to obtain an 
upper bound onp. 
(c) Use the Chernoff bound to obtain an upper bound 
onp. 
(d) Approximate p by making use of the central limit 
theorem. 
(e) Determine p by running an appropriate program. 

24. If X is a Poisson random variable with mean 100, then 
P{X > 120} is approximately 

(a) .02, 
(b) .5 or 
(c) .3? 

(called Bernstein polynomials) and prove that 

lim Bn(X) = f(x) 
n~oo 

Hint: Let Xi, X2, . . . be independent Bernoulli random 
variables with mean x. Show that 

and then use Theoretical Exercise 4. 

Since it can be shown that the convergence of Bn(x) to 
f(x) is uniform in x, the preceding reasoning provides a 
probabilistic proof of the famous Weierstrass theorem of 
analysis, which states that any continuous function on a 
closed interval can be approximated arbitrarily closely by 
a polynomial. 

6. (a) Let X be a discrete random variable whose possi
ble values are 1, 2, .... If P{X = k} is nonincreasing in 
k = 1, 2, ... , prove that 

P{X = k} s 2 E[~] 
. k 

(b) Let X be a nonnegative continuous random variable 
having a nonincreasing density function. Show that 

f (x) s 2E~X] for all x > 0 
x 

1. Suppose that a fair die is rolled 100 times. Let Xi be 
s. Let/(x) be a continuous function defined for o s x s 1. the value obtained on the ith roll. Compute an approxi-
Consider the functions mation for · 
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8. Explain why a gamma random variable with parame- by considering the density of Z, that the right side of 
ters (t, A.) has an approximately normal distribution when t the inequality can be reduced by the factor 2. That is, 
is large. show that 

9. Suppose a fair coin is tossed 1000 times. If the first 100 
tosses all result in heads, what proportion of heads would 
you expect on the final 900 tosses? Comment on the state
ment "The strong law of large numbers swamps but does 
not compensate." 

IO. If X is a Poisson random variable with mean A., show 
that for i < A., 

11. Let X be a binomial random variable with parameters 
n and p. Show that, for i > np, 

(a) minimum e-li E[e'X] occurs when t is such that e' = 
. t>O 

(n~i)p, where q = 1 - p. 

(b) P{X <:: i} S ''( n;n ,pi(l - p)n-i. i n-i 

12. The Chernoff bound on a standard normal random 
variable Z gives P{Z > a} s e-a212 ,a > 0. Show, 

Self-Test Problems And Exercises 

13. Show that if E[X] < 0 and() =F 0 is such that E[e9X] = 1, 
then() > 0. 

14. Let Xi.X2, ... be a sequence of independent and iden
tically distributed random variables with distribution F, 
having a finite mean and variance. Whereas the cen
tral limit theorem states that the distribution of E~1 xi 
approaches a normal distribution as n goes to infinity, it 
gives us no information about how large n need be before 
the normal becomes a good approximation. Whereas in 
most applications, the approximation yields good results 
whenever n <:: 20, and oftentimes for much smaller values 
of n, how large a value of n is needed depends on the dis
tribution of Xi. Give an example of a ~stribution F such 
that the distribution of E}~ Xi is not close to a normal 
distribution. 
Hint: Think Poisson. 

I. The number of automobiles sold weekly at a certain probability that more units are produced today at factory 
dealership is a random variable with expected value 16. B than at factory A. 
Give an upper bound to the probability that 
(a) next week's sales exceed 18; 
(b) next week's sales exceed 25. 

2. Suppose in Problem 14 that the variance of the number 
of automobiles sold weekly is 9. 
(a) Give a lower bound to the probability that next week's 
sales are between 10 and 22, inclusively. 
(b) Give an upper bound to the probability that next 
week's sales exceed 18. 

3. If 

E[X] = 75 E[Y] = 75 Var(X) = 10 
Var(Y) = 12 Cov(X, Y) = -3 

give an upper bound to 
(a) P{IX - YI > 15}; 
(b) P{X > Y + 15}; 
(c) P{Y > X + 15}. 

4, Suppose that the number of units produced daily at fac
tory A is a random variable with mean 20 and standard 
deviation 3 and the number produced at factory B is a 
random variable with mean 18 and standard deviation 6. 
Assuming independence, derive an upper bound for the 

S. The amount of time that a certain type of component 
functions before failing is a random variable with proba
bility density function 

f (x) = 2x 0 < x < 1 

Once the component fails, it is immediately replaced by 
another one of the same type. If we let Xi denote the life

n 
time of the ith component to be put in use, then Sn = E Xi 

i=l 
represents the time of the nth failure. The long-term rate 
at which failures occur, call it r, is defined by 

r = lim ..!:_ 
n-+oo Sn 

Assuming that the random variables Xi, i <:: 1, are inde
pendent, determine r. 

6. In Self-Test Problem 5, how many components would 
one need to have on hand to be approximately 90 percent 
certain that the stock would last at least 35 days? 

7. The servicing of a machine requires two separate steps, 
with the time needed for the first step being an exponen
tial random variable with mean .2 hour and the time for 
the second step being an independent exponential ran
dom variable with mean .3 hour. If a repair person has 20 
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machines to service, approximate the probability that all 
the work can be completed in 8 hours. 

8. On each bet, a gambler loses 1 with probability .7, 
loses 2 with probability .2, or wins 10 with probability .1. 
Approximate the probability that the gambler will be los
ing after his first 100 bets. 

volunteer doctors there are on a given day, the numbers 
of patients seen by these doctors are independent Poisson 
random variables with mean 30. Let X denote the number 
of patients seen in the clinic on a given day. 

(a) Find E[X]. 
(b) Find Var(X). 
(c) Use a table of the standard normal probability distri-

9. Determine t so that the probability that the repair per- bution to approximate P{X > 65}. 
son in Self-Test Problem 7 finishes the 20 jobs within time 
tis approximately equal to .95. 

Io. A tobacco company claims that the amount of nicotine 
in one of its cigarettes is a random variable with mean 2.2 
mg and standard deviation .3 mg. However, the average 
nicotine content of 100 randomly chosen cigarettes was 3.1 
mg. Approximate the probability that the average would 
have been as high as or higher than 3.1 if the company's 
claims were true. 

11. Each of the batteries in a collection of 40 batteries is 
equally likely to be either a type A or a type B battery. 
1Ype A batteries last for an amount of time that has mean 
50 and standard deviation 15; type B batteries last for an 
amount of time that has mean 30 and standard deviation 6. 
(a) Approximate the probability that the total life of all 40 
batteries exceeds 1700. 

13. The strong law of large numbers states that with proba
bility 1, the successive arithmetic averages of a sequence of 
independent and identically distributed random variables 
converge to their common meanµ. What do the successive 
geometric averages converge to? That is, what is 

n~oo flxi ( )

1/n 

l=l 

14. Each new book donated to a library must be pro
cessed. Suppose that the time it takes to process a book 
has mean 10 minutes and standard deviation 3 minutes. If 
a librarian has 40 books to process, 
(a) approximate the probability that it will take more than 
420 minutes to process all these books; 

(b) Suppose it is known that 20 of the batteries are type A 
and 20 are type B. Now approximate the probability that 
the total life of all 40 batteries exceeds 1700. (b) approximate the probability that at least 25 books will 

12. A clinic is equally likely to have 2, 3, or 4 doctors vol- be processed in the first 240 minutes. 
unteer for service on a given day. No matter how many What assumptions have you made? 

Answers to Selected Problems 

L ~19/20 
s .. 1416 
10. 117 

2. 15117; ~/4; ~10 3. ~ 4. $4/3; .8428 14. n ~ 23 16. .013; .018; .691 18. s.2 23 •. 769; .357; 
6 . . 9431 7 . .3085 8 . . 6932 9. (327)2 .4267; .1093; .112184 24. answer is (a) 
1L ~.057 13 . . 0162; .0003; .2514; .2514 

Solutions to Self-Test Problems and Exercises 

I. Let X denote the number of sales made next week, 
and note that X is integral. From Markov's inequality, we 
obtain the following: 

(a) P{X > 18} = P{X ~ 19} :::;; E~-:1 = 16/19 

(b) P{X > 25} = P{X ~ 26} :S E~i = 16/26 

2. (a) P{lO :S X :S 22} = P{IX - 161 :::;; 6} 

= P{IX - µI :::;; 6} 

= 1 - P{IX - µI > 6} 

~ 1 - 9/36 = 3/4 

9 
(b) P{X ~ 19} = P{X - 16 ~ 3} :S 9 + 9 = 1/2 

In part (a), we used Chebyshev'sinequality; in part (b), we 
used its one-sided version. (See Proposition 5.1.) 

3. First note that E[X - Y] = 0 and 

Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y) = 28 

Using Chebyshev's inequality in part (a) and the one-sided 
version in parts (b) and ( c) gives the following results: 

(a) P{iX - Yi > 15} :::;; 28/225 

(b) P{X - Y > 15} :S 28 !8 
225 = 28/253 
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28 
(c) P{Y - X > 15} ::::; 28 + 225 = 28/253 

4. If X is the number produced at factory A and Y the 
number produced at factory B, then 

E[Y - X] = -2, Var(Y - X) = 36 + 9 = 45 

P{Y - X > O} = P{Y - X ~ 1} 

45 
= P{Y - X + 2 ~ 3} ::::; --

45 + 9 
=45/54 

5. Note first that 

E[Xi] = fo1 2x2 dx = 2/3 

Now use the strong law of large numbers to obtain 

1. n 
r= tm -

n .... oo Sn 

1. 1 = tm -
n .... ooSn/n 

1 
=----

lim Sn/n 
n .... oo 

= 1/(2/3) = 3/2 

6. Because E[Xi] = 2/3 and 

E[Xf] = fo1 2x3 dx = 1/2 

Therefore, with X; being the time required to service job 
i, i = 1, ... , 20, and Z being a standard normal random 
variable, it follows that 

P{X1+···+X20 < 8}=P{Xi+··~20-l0 < 8~} 
2.6 v2.6 

RI P{Z < -1.24035} 

RI .1074 

8. Note first that if Xis the gambler's winnings on a single 
bet, then 

E[X] = -.7 - .4 + 1 = -.l,E[X2] = .7 + .8 + 10 = 11.5 

.... Var(X) = 11.49 

Therefore, with Z having a standard normal distribution, 

P{x X 51 P{ X1+···+X100+10 -.5+10} 1+···+ 100 :S -. = :S --.JIT49 v'l149 

~ P{Z s .2803} ~ 

~ .6104 

9. Using the notation of Problem 7, we have 

{
X1 + · · · +X20-10 

P{X1 + · · · + X20 < t} = P M£ 
'\/ 2.6 

RI p {z < t - lQ} 
m 

<--t-10} m 

we have Var(X;) = 1/2 - (2/3)2 = 1/18. Thus. if there are Now, P{Z < 1.645} RI .95, so t should be such that 
n components on hand, then 

P{Sn ~ 35} = P{Sn ~ 34.5} (the continuity correction) 

= p { Sn - 2n/3 ::::; 34.5 - 2n/3 } 
Jn/18 Jn/18 

RI p {z ~ 34.5 - 2n/3} 
Jn/18 

where Z is a standard normal random variable. Since 

P{Z > -1.284} = P{Z < 1.284} RI .90 

we see that n should be chosen so that 

(34.5 - 2n/3) RI -l.284Jn/18 

A numerical computation gives the result n = 55. 

1. If X is the time required to service a machine, then 

E[X] = .2 + .3 = .5 

Also, since the variance of an exponential random variable 
is equal to the square of its mean, we have 

Var(X) = (.2)2 + (.3)2 = .13 

t - lQ RI 1.645 
m 

which yields t RI 12.65. 

Io. If the claim were true, then, by the central limit theo
rem, the average nicotine content (call it X) would approx
imately have a normal distribution with mean 2.2 and stan
dard deviation .03. Thus. the probability that it would be as 
high as 3.1 is 

P{X > 3.l} = p { X ~32.2 > 3.1 .~3 2.2} 

RI P{Z > 30} 

RI 0 

where Z is a standard normal random variable. 

11. (a) If we arbitrarily number the batteries and let Xi 
denote the life of battery i, i = 1, ... , 40, then the Xi are 
independent and identically distributed random variables. 
To compute the mean and variance of the life of, say, bat
tery 1, we condition on its type. Letting I equal 1 if battery 
1 is type A and letting it equal 0 if it is type B, we have 

E[X1il = 1] = 50, 
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yielding 

E[Xi] =SOP{!= l} + 30P{l = O} 

= 50(1/2) + 30(1/2) = 40 

In addition, using the fact that E[W2] = (E[W])2 + 
Var(W), we have 

E[Xfll = 1] = (50)2 + (15)2 = 2725, 

E[Xf II= O] = (30)2 + 62 = 936 

As a result, 

E[X] = E[E[XIN]] = 30E[N] = 90 

Also, by the conditional variance formula, 

Because 

Var(X) = E[Var(XiN)] + Var(E[XIN]) 

= 30E[N] + (30)2Var(N) 

yielding Var(N) = ~(22 + 32 + 42) - 9 = 2/3 

E[Xf] = (2725)(1/2) + (936)(1/2) = 1830.5 we obtain Var(X) = 690. 
To approximate P{X > 65}, we would not be justified in 

Thus, X1, ... , X40 are independent and identically dis- assuming that the distribution of X is approximately that 
tributed random variables having mean 40 and variance of a normal random variable with mean 90 and variance 
1830.5 - 1600 = 230.5. Hence, with S = L:~1 Xi, we 690. What we do know, however, is that 
have 

E[S] = 40(40) = 1600, Var(S) = 40(230.5) = 9220 

and the central limit theorem yields 

{ s - 1600 1700 - 1600} 
P{S > 1700} = P rrv;;:m > rrv;;:m 

v9220 v9220 
:::::: P{Z > 1.041} 

= 1 - <t>(l.041) = .149 

(b) For this part, let SA be the total life of all the type A 
batteries and let Ss be the total life of all the type B bat
teries. Then, by the central limit theorem, SA has approx
imately a normal distribution with mean 20(50) = 1000 
and variance 20(225) = 4500, and Ss has approximately a 
normal distribution with mean 20(30) = 600 and variance 
20(36) = 720. Because the sum of independent normal 
random variables is also a normal random variable, it fol
lows that SA + Ss is approximately normal with mean 
1600 and variance 5220. Consequently, with S =SA + Ss, 

{ s - 1600 1700 - 1600} 
P{S > 1700} = P ~ > ~ 

'V 5220 'V 5220 
:::::: P{Z > 1.384} 

= 1 - <t>(l.384) = .084 

12. Let N denote the number of doctors who volunteer. 
Conditional on the event N = i, the number of patients 
seen is distributed as the sum of i independent Poisson 
random variables with common mean 30. Because the sum 
of independent Poisson random variables is also a Poisson 
random variable, it follows that the conditional distribu
tion of X given that N = i is Poisson with mean 30i. 
Therefore, 

E[XIN] =30N Var(XIN) = 30N 

4 1 4 -
P{X > 65} = L P{X > 651N = i}P{N = i} = 3 L Pi(65) 

i=2 i=2 

where Pi(65) is the probability that a Poisson random vari
able with mean 30i is greater than 65. That is, 

65 

Pi(65) = 1 - L e-3oi(30iY /j! 
j=O 

Because a Poisson random variable with mean 30i has 
the same distribution as does the sum of 30i independent 
Poisson random variables with mean 1, it follows from 
the central limit theorem that its distribution is approxi
mately normal with mean and variance equal to 30i. Con
sequently, with X; being a Poisson random variable with 
mean 30i and Z being a standard normal random variable, 
we can approximate Pi(65) as follows: 

Pi(65) = P{X > 65} 

= P{X ~ 65.5} 

Therefore, 

=P ~ --==--{ x - 30i 65.5 - 30i} 
v'3Qi v'30i 

:::::: P {z ~ 65.5 - 30i} 
v'30i 

P2(65) :::::: P{Z ~ .7100} :::::: .2389 

P3(65) :::::: P{Z ~ -2.583} :::::: .9951 

P4(65) ::::; P{Z ~ -4.975} ::::; 1 

leading to the result 

P{X > 65} :::::: .7447 
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If we would have mistakenly assumed that X was approx- (a) With Z being a standard normal 
imately normal, we would have obtained the approximate 
answer .8244. (The exact probability is .7440.) 

I 3. Take logarithms and then apply the strong law of large 
p { S > 420} = p { S40 - 400 > 420 - 400 } 

40 J40:9 J40:9 
numbers to obtain 

~ p { z > ~} ~ .146 

(b) 

Therefore, 

( )

1/n 

CT xi -+-~[log(X;)] 

p { S25 s 240} = p { S2s - 250 s 240 - 250 } 
$-:-§ $-:-§ 

~ p { z s - ~~ } ~ .2525 

14. Let Xi be the time it takes to process book i, and let We have assumed that the successive book processing 
Sn = L:7=1 Xi. times are independent. 
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Introduction 
How can we determine the probability of our winning a game of solitaire? 
(By solitaire, we mean any one of the standard solitaire games played with an ordi
nary deck of 52 playing cards and with some fixed playing strategy.) One possible 
approach is to start with the reasonable hypothesis that all (52)! possible arrange
ments of the deck of cards are equally likely to occur and then attempt to determine 
how many of these lead to a win. Unfortunately, there does not appear to be any sys
tematic method for determining the number of arrangements that lead to a win, and 
as (52)! is a rather large number and the only way to determine whether a particular 
arrangement leads to a win seems to be by playing the game out, it can be seen that 
this approach will not work. 

In fact, it might appear that the determination of the probability of winning 
at solitaire is mathematically intractable. However, all is not lost, for probability 
falls not only within the realm of mathematics, but also within the realm of applied 
science; and, as in all applied sciences, experimentation is a valuable technique. For 
our solitaire example, experimentation takes the form of playing a large number of 
such games or, better yet, programming a computer to do so. After playing, say, n 
games, if we let 

X _ { 1 if the ith game results in a win 
1 - 0 otherwise 

then X;, i = 1, ... , n will be independent Bernoulli random variables for which 

E[Xi] = P{win at solitaire} 

Hence, by the strong law of large numbers, we know that 

n L X; number of games won 
. n = number of games played 
1=1 

From Chapter 10 of A First Course in Probability, Ninth Edition. Sheldon Ross. 
Copyright© 2014 by Pearson Education, Inc. All rights reserved. 
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will, with probability 1, converge to P{win at solitaire}. That is, by playing a large 
number of games, we can use the proportion of games won as an estimate of the 
probability of winning. This method of empirically determining probabilities by 
means of experimentation is known as simulation. 

In order to use a computer to initiate a simulation study, we must be able to 
generate the value of a uniform (0, 1) random variable; such variates are called ran
dom numbers. To generate them, most computers have a built-in subroutine, called a 
random-number generator, whose output is a sequence of pseudorandom numbers
a sequence of numbers that is, for all practical purposes, indistinguishable from a 
sample from the uniform (0, 1) distribution. Most random-number generators start 
with an initial value X 0, called the seed, and then recursively compute values by 
specifying positive integers a, c, and m, and then letting 

Xn+l = (aXn + c) modulo m n :::::: 0 (1.1) 

where the foregoing means that aXn + c is divided by m and the remainder is taken 
as the value ofXn+l· Thus, each Xn is either 0, 1, ... ,m - 1, and the quantity Xn/m is 
taken as an approximation to a uniform (0, 1) random variable. It can be shown that 
subject to suitable choices for a, c, and m, Equation (1.1) gives rise to a sequence 
of numbers that look as if they were generated from independent uniform (0, 1) 
random variables. 

As our starting point in simulation, we shall suppose that we can simulate from 
the uniform (0, 1) distribution, and we shall use the term random numbers to mean 
independent random variables from this distribution. 

In the solitaire example, we would need to program a computer to play out the 
game starting with a given ordering of the cards. However, since the initial ordering 
is supposed to be equally likely to be any of the (52)1 possible permutations, it is also 
necessary to be able to generate a random permutation. Using only random num
bers, the following algorithm shows how this can be accomplished. The algorithm 
begins by randomly choosing one of the elements and then putting it in position n; it 
then randomly chooses among the remaining elements and puts the choice in posi
tion n - 1, and so on. The algorithm efficiently makes a random choice among the 
remaining elements by keeping these elements in an ordered list and then randomly 
choosing a position on that list. 

Generating a random permutation 

Suppose we are interested in generating a permutation of the integers 1, 2, ... , n 
such that all nl possible orderings are equally likely. Then, starting with any initial 
permutation, we will accomplish this after n - 1 steps, where we interchange the 
positions of two of the numbers of the permutation at each step. Throughout, we 
will keep track of the permutation by letting X(i), i = 1, ... , n denote the number 
currently in position i. The algorithm operates as follows: 

1. Consider any arbitrary permutation, and let X(i) denote the element in posi
tion i, i = 1 ... , n. [For instance, we could take X(l) = i, i = 1, ... , n.] 

2. Generate a random variable Nn that is equally likely to equal any of the values 
1,2, ... ,n. 

3. Interchange the values of X(Nn) and X(n). The value of X(n) will now remain 
fixed. [For instance, suppose that n = 4 and initially X(i) = i, i = 1, 2, 3, 4. If 
N4 = 3, then the new permutation is X(l) = 1,X(2) = 2,X(3) = 4,X(4) = 3, 
and element 3 will remain in position 4 throughout.] 

4. Generate a random variable Nn-1 that is equally likely to be either 1, 2, ... , 
n - 1. 
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5. Interchange the values of X(Nn-1) and X(n - 1). [If N3 = 1, then the new 
permutation is X(l) = 4,X(2) = 2,X(3) = 1,X(4) = 3.] 

6. Generate Nn_z, which is equally likely to be either 1,2, ... ,n - 2. 
7. Interchange the values of X(Nn-2) and X(n - 2). [If Nz = 1, then the new 

permutation is X(l) = 2,X(2) = 4,X(3) = l,X(4) = 3, and this is the final 
permutation.] 

8. Generate Nn-3, and so on. The algorithm continues until Nz is generated, and 
after the next interchange the resulting permutation is the final one. 

To implement this algorithm, it is necessary to be able to generate a random 
variable that is equally likely to be any of the values 1, 2, ... , k. To accomplish this, 
let U denote a random number-that is, U is uniformly distributed on (0, 1)-and 
note that kU is uniform on (0, k). Hence, 

1 
P{i - 1 < kU < i} = k i = 1, .. ., k 

so if we take Nk = [kU] + 1, where [x] is the integer part of x (that is, the largest 
integer less than or equal to x), then Nk will have the desired distribution. 

The algorithm can now be succinctly written as follows: 

Step 1. Let X(l), ... ,X(n) be any permutation of 1,2, ... , n. [For instance, we 
can set X(i) = i, i = 1,. .. ,n.] 

Step 2. Let I = n. 
Step 3. Generate a random number U and set N = [JU] + 1. 
Step 4. Interchange the values of X(N) and X(l). 
Step 5. Reduce the value of I by 1, and if I > 1, go to step 3. 
Step 6. X(l), ... ,X(n) is the desired random generated permutation. 

The foregoing algorithm for generating a random permutation is extremely use
ful. For instance, suppose that a statistician is developing an experiment to compare 
the effects of m different treatments on a set of n subjects. He decides to split the 
subjects intom different groups of respective sizes nl,nz, ... ,nm, where I:~1 ni = n, 
with the members of the ith group to receive treatment i. To eliminate any bias in 
the assignment of subjects to treatments (for instance, it would cloud the meaning 
of the experimental results if it turned out that all the "best" subjects had been put 
in the same group), it is imperative that the assignment of a subject to a given group 
be done "at random." How is this to be accomplished?t 

A simple and efficient procedure is to arbitrarily number the subjects 1 through 
n and then generate a random permutation X(l), ... ,X(n) of 1,2, ... ,n. Now assign 
subjects X(l),X(2), ... ,X(n1) to be in group 1; X(n1 + 1), ... ,X(n1 + nz) to be in 
group 2; and, in general, group j is to consist of subjects numbered X(n1 + nz + 
· · · + nj-1 + k),k = 1, ... ,nj. • 

2 General Techniques for Simulating Continuous 
Random Variables 

In this section, we present two general methods for using random numbers to simu
late continuous random variables. 

hnis note has been intentionally omitted for this edition. 
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2.1 The Inverse Transformation Method 

A general method for simulating a random variable having a continuous 
distribution-called the inverse transformation method-is based on the following 
proposition. 

Let U be a uniform (0, 1) random variable. For any continuous distribution function 
F, if we define the random variable Y by 

y = p-l(U) 

then the random variable Y has distribution function F. [F-1(x) is defined to equal 
that value y for which F(y) = x.] 

Proof 

Fy(a) = P{Y s; a} 

= P{F-1(U) s; a} (2.1) 

Now, since F(x) is a monotone function, it follows that p-1(U) s; a if and only if 
U s; F(a). Hence, from Equation (2.1), we have 

Fy(a) = P{U s; F(a)} 

= F(a) D 

It follows from Proposition 2.1 that we can simulate a random variable X having 
a continuous distribution function F by generating a random number U and then 
settingX = p-1(U). 

Simulating an exponential random variable 

If F(x) = 1 - e-x, then p-l (u) is that value of x such that 

1 - e-x = u 

or 
x = -log(l - u) 

Hence, if U is a uniform (0, 1) variable, then 

P-1(U) = -log(l - U) 

is exponentially distributed with mean 1. Since 1 - U is also uniformly distributed on 
(0, 1 ), it follows that - log U is exponential with mean 1. Since cX is exponential with 
mean c when X is exponential with mean 1, it follows that -clog U is exponential 
with meanc. • 

The results of Example 2a can also be utilized to stimulate a gamma random 
variable. 

Simulating a gamma (n, l.) random variable 

To simulate from a gamma distribution with parameters (n, J..) when n is an integer, 
we use the fact that the sum of n independent exponential random variables, each 
having rate J.., has this distribution. Hence, if Ui, ... , Un are independent uniform 
(0, 1) random variables, then 
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has the desired distribution. • 
2.2 The Rejection Method 

Suppose that we have a method for simulating a random variable having density 
function g(x). We can use this method as the basis for simulating from the continu
ous distribution having density f (x) by simulating Y from g and then accepting the 
simulated value with a probability proportional to f(Y)/g(Y). 

Specifically, let c be a constant such that 

f(y) ::s; c for ally 
g(y) 

We then have the following technique for simulating a random variable having 
density f. 

Rejection Method 

Step 1. Simulate Y having density g and simulate a random number U. 
Step 2. If U ::s; f(Y)/cg(Y), set X = Y. Otherwise return to step 1. 

The rejection method is expressed pictorially in Figure 1. We now prove that it 
works. 

Start 

Generate 
Y-g 

Generate a 
random number 

u 

ls 
Uo;; f(Y) 

cg(Y) 

~Y_e_s _. Set X = Y 

No 

Figure I Rejection method for simulating a random variable X having density func
tion/. 

Proposition The random variable X generated by the rejection method has density function f. 
2.2 

Proof Let X be the value obtained and let N denote the number of necessary itera
tions. Then 

P{X ::5 x} = P{YN ::5 x} 

= P { Y ::s; xi U ::s; f (Y) } 
cg(Y) 

p { y ::5 x, U ::5 f (Y) } 
cg(Y) 

K 

where K = P{U ::s; f(Y)/cg(Y)}. Now, by independence, the joint density function 
of Yand U is 

f(y, u) = g(y) 0 < u < 1 
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so, using the foregoing, we have 

1 
P{X s x} = -

K ff g(y)dudy 

y :S x 
0 s u s f(y)/cg(y) 

1 Ix lof(y)/cg(y) 
= - dug(y)dy 

K -oo o 
1 Ix = - f(y)dy 

cK _00 

Letting X approach oo and using the fact that f is a density gives 

1 loo 1 1 = - f(y) dy = -
cK _00 cK 

Hence, from Equation (2.2), we obtain 

P{X s x} = [~f(y) dy 

which completes the proof. 

(2.2) 

0 

Remarks (a) Note that the way in which we "accept the value Y with probability 
f(Y)/cg(Y)" is by generating a random number U and then accepting Y if U s 
f(Y)/cg(Y). 

(b) Since each iteration will independently result in an accepted value with prob
ability P{U s f(Y)/cg(Y)} = K = 1/c, it follows that the number of iterations has a 
geometric distribution with mean c. • 

Simulating a normal random variable 

To simulate a unit normal random variable Z (that is, one with mean 0 and vari
ance 1), note first that the absolute value of Z has probability density function 

2 2/2 f (x) = r,:ce-x 0 < x < oo 
-v2ir 

(2.3) 

We will start by simulating from the preceding density function by using the rejection 
method, with g being the exponential density function with mean 1-that is, 

g(x) = e-x 0 < x < oo 

Now, note that 

(2.4) 
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Hence, we can take c = J2e/'j(; so, from Equation (2.4), 

f (x) = ex 1-(x - 1)2 } 
cg(x) p 2 

Therefore, using the rejection method, we can simulate the absolute value of a unit 
normal random variable as follows: 

(a) Generate independent random variables Y and U, Y being exponential with 
rate 1 and U being uniform on (0, 1). 

(b) If Us exp{-(Y - 1)2/2}, setX = Y. Otherwise, return to (a). 

Once we have simulated a random variable X having Equation (2.3) as its density 
function, we can then generate a unit normal random variable Z by letting Z be 
equally likely to be either X or - X. 

In step (b ), the value Y is accepted if Us exp{-(Y - 1)2 /2}, which is equivalent 
to - log U ;::: (Y - 1)2 /2. However, in Example 2a, it was shown that - log U is 
exponential with rate 1, so steps (a) and (b) are equivalent to 

(a') Generate independent exponentials Y1 and Y2, each with rate 1. 
(b') If Y2 ;::: (Y1 - 1)2 /2, set X = Y1. Otherwise, return to (a')._ 

Suppose now that the foregoing results in Y1 being accepted-so we know that Y2 
is larger than (Y1 - 1)2 /2. By how much does the one exceed the other? To answer 
this question, we know that Y2 is exponential with rate 1; hence, given that it exceeds 
some value, the amount by which Y2 exceeds (Y1 - 1)2 /2 [that is, its "additional life" 
beyond the time (Y1 - 1)2 /2] is (by the memoryless property) also exponentially 
distributed with rate 1. That is, when we accept step (b'), not only do we obtain X 
(the absolute value of a unit normal), but, by computing Y2 - (Y1 - 1)2 /2, we 
also can generate an exponential random variable (that is independent of X) having 
rate 1. 

Summing up, then, we have the following algorithm that generates an exponen
tial with rate 1 and an independent unit normal random variable: 

Step 1. Generate Yi, an exponential random variable with rate 1. 
Step 2. Generate Y2, an exponential random variable with rate 1. 
Step 3. If Y2 - (Y1 - 1)2 /2 > 0, set Y = Y2 - (Y1 - 1)2 /2 and go to step 

4. Otherwise, go to step 1. 
Step 4. Generate a random number U, and set 

{ 
Y1 if Us ~ 

Z= 1 
-Y1 if U > ~ 

The random variables Z and Y generated by the foregoing algorithm are inde
pendent, with Z being normal with mean 0 and variance 1 and Y being exponential 
with rate 1. (If we want the normal random variable to have mean µ and variance 
u2, we just take µ + u Z.) 

Remarks (a) Since c = J2e/']'( ~ 1.32, the algorithm requires a geometrically dis
tributed number of iterations of step 2 with mean 1.32. 

(b) If we want to generate a sequence of unit normal random variables, then we 
can use the exponential random variable Y obtained in step 3 as the initial exponen
tial needed in step 1 for the next normal to be generated. Hence, on the average, we 
can simulate a unit normal by generating 1.64(= 2 x 1.32 - 1) exponentials and 
computing 1.32 squares. • 
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Simulating normal random variables: the polar method 

If X and Y are independent unit normal random variables, then their polar coordi
nates R=J XZ+ Y2, E>= tan-1 ( Y /X) are independent, with R2 being exponentially 
distributed with mean 2 and @ being uniformly distributed on (0, 2rr ). Hence, if U1 
and U2 are random numbers, then, using the result of Example 2a, we can set 

from which it follows that 

R = (-2log U1)112 

e = 2nU2 

X = R cos e = (-2 log U1 )112 cos(2rr U2) 

Y = R sin eJ = (-2 log u1)112 sin(2rr U2) 

are independent unit normals. 

(2.5) 

• 
The preceding approach to generating unit normal random variables is called 

the Box-Muller approach. Its efficiency suffers somewhat from its need to compute 
the sine and cosine values. There is, however, a way to get around this potentially 
time-consuming difficulty. To begin, note that if U is uniform on (0, 1), then 2U is 
uniform on (0, 2), so 2U - 1 is uniform on (-1, 1). Thus, if we generate random 
numbers U1 and U2 and set 

Vi= 2U1 - 1 

V2 = 2U2 - 1 

then <V1, V2) is uniformly distributed in the square of area 4 centered at (0, 0). (See 
Figure 2.) 

Suppose now that we continually generate such pairs <Vi, V2) until we obtain 
one that is contained in the disk of radius 1 centered at (0, 0)- that is, until Vi + 
Vi :S 1. It then follows that such a pair <Vi, V2) is uniformly distributed in the disk. 

~v, 
Vy+ V~ = 1 

• = (0, 0) 

X = (V1, V2) 

Figure 2 
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Now, let R, e denote the polar coordinates of this pair. Then it is easy to verify that 
Rand e are independent, with R.2 being uniformly distributed on (0, 1) and e being 
uniformly distributed on (0,2rr). (See Problem 13.) 

Since 

. - V2 V2 
sme =-=- = ---;:::=== 

R !v2 + y2 y 1 2 

- Vi Vi 
cos e = -=- = ---;:::=== 

R ./Vi+ Vi 
it follows from Equation (2.5) that we can generate independent unit normals X and 
Y by generating another random number U and setting 

x = (-2logU)112Vi/R 

Y = (-2log U)112V2/R 

In fact, because (conditional on Vi + Vi s 1) R.2 is uniform on (0, 1) and is inde
pendent of 7i, we can use it instead of generating a new random number U, thus 
showing that 

X=(-2logR2)112;; =J-2~gSVi 

y = (-2logR2)1;2 i = J-2~gSV2 

are independent unit normals, where 

S= R.2 =vi+ vi 
Summing up, we have the following approach to generating a pair of independent 
unit normals: 

Step 1. Generate random numbers U1 and U2. 
Step 2. Set Vi= 2U1 - 1, V2 = 2U2 - l,S =Vi + Vi. 
Step 3. If S > 1, return to step 1. 
Step 4. Return the independent unit normals 

X = J-2~gSVi, y = J-2~gSV2 
The preceding algorithm is called the polar method. Since the probability that a 

random point in the square will fall within the circle is equal to ;rr /4 (the area of the 
circle divided by the area of the square), it follows that, on average, the polar method 
will require 4/;rr ~ 1.273 iterations of step 1. Hence, it will, on average, require 2.546 
random numbers, 1 logarithm, 1 square root, 1 division, and 4.546 multiplications to 
generate 2 independent unit normals. 

Simulating a chi-squared random variable 

The chi-squared distribution with n degrees of freedom is the distribution of x; = 
Zi + · · · + Z~, where Zi, i = 1, ... , n are independent unit normals. Zi + Z~ has an 
exponential distribution with rate !·Hence, when n is even (say, n = 2k), xik has a 

gamma distribution with parameters ( k, ! ). Thus, -2 log(07=1 Vi) has a chi-squared 
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distribution with 2k degrees of freedom. Accordingly, we can simulate a chi-squared 
random variable with 2k + 1 degrees of freedom by first simulating a unit normal 
random variable Z and then adding Z2 to the foregoing. That is, 

where Z, Ui, ... , Un are independent, Z is a unit normal, and U1, ... , Un are uniform 
(0, 1) random variables. 

3 Simulating from Discrete Distributions 

Example 
3a 

All of the general methods for simulating random variables from continuous dis
tributions have analogs in the discrete case. For instance, if we want to simulate a 
random variable Z having probability mass function 

P{X=Xj}=Pj, j=0,1, ... , LPj=1 
j 

we can use the following discrete time analog of the inverse transform technique: 
To simulate X for which P{X = Xj} = Pj, let Ube uniformly distributed over 

(0, 1) and set 

Since 

X= 

X1 if u :$ P1 
x2 if P1 < U ::; P1 + P2 

Xj 
j-1 j 

if L pi < u :$ L Pi 
1 

{
j-1 j } 

P{X=xj} = P ~Pi< U::; ~Pi =Pj 

it follows that X has the desired distribution. 

The geometric distribution 

Suppose that independent trials, each of which results in a "success" with probability 
p, 0 < p < 1, are continually performed until a success occurs. Letting X denote the 
necessary number of trials; then 

P{X = i} = (1 - p)i-lp i ;:;:::: 1 

which is seen by noting that X = i if the first i - 1 trials are all failures and the ith 
trial is a success. The random variable X is said to be a geometric random variable 
with parameter p. Since 
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j-1 

LP{X = i} = 1 - P{X > j - 1} 
i=l 

= 1 - P{firstj - 1 are all failures} 

= 1 - (1 - p y-1 j ~ 1 

we can simulate such a random variable by generating a random number U and then 
setting X equal to that value j for which 

. 1 . 
1 - (1 - p y- < u $ 1 - (1 - p y 

or, equivalently, for which 

(1 - p y $ 1 - u < (1 - p y-1 

Since 1 - Uhas the same distribution as U, we can define X by 

X = minU: (1 - PY s U} 

= minU: jlog(l - p) s log U} 

. {. . logU } 
= mm 1 : 1 ~ log(l - p) 

where the inequality has changed sign because log(l-p) is negative [since log(l-p) 
> log 1 = OJ. Using the notation [x] for the integer part of x (that is, [x] is the largest 
integer less than or equal to x), we can write 

X = l + [ logU ] 
log(l - p) • 

As in the continuous case, special simulating techniques have been developed 
for the more common discrete distributions. We now present two of these. 

Simulating a binomial random variable 

A binomial (n, p) random variable can easily be simulated as it can be expressed 
as the sum of n independent Bernoulli random variables. That is, if U1, ... , Un are 
independent uniform (0, 1) variables, then letting 

n 

X _ {1 if Ui < p 
1 - 0 otherwise 

it follows that X = I: Xi is a binomial random variable with parameters n and p. 
i=l 

Simulating a Poisson random variable 

To simulate a Poisson random variable with mean J.., generate independent uniform 
(0, 1) random variables U1, Uz, ... stopping at 

N =min {n: fl Ui < e-}..} 
1=1 
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The random variable X = N - 1 has the desired distribution. That is, if we continue 
generating random numbers until their product falls below e-A, then the number 
required, minus 1, is Poisson with mean J... 

That X = N - 1 is indeed a Poisson random variable having mean),. can perhaps 
be most easily seen by noting that 

X + 1 =min {n: fl U; < e-A} 
1=1 

is equivalent to 

X =max {n: fl U; <?: e-A} 
1=1 

0 

where n U; = 1 
i=l 

or, taking logarithms, to 

X =max {n: i)og U; <?: -},.} 

1=1 

or 

X =max {n: t-logU; :5 ),.} 

1=1 

However, - log U; is exponential with rate 1, so X can be thought of as being the 
maximum number of exponentials having rate 1 that can be summed and still be less 
than J... But the times between successive events of a Poisson process having rate 1 
are independent exponentials with rate 1, it follows that Xis equal to the number of 
events by time),. of a Poisson process having rate 1; thus, X has a Poisson distribution 
withmean J... • 

4 Variance Reduction Techniques 
Let X1, ... , Xn have a given joint distribution, and suppose that we are interested in 
computing 

where g is some specified function. It sometimes turns out that it is extremely dif
ficult to analytically compute (), and when such is the case, we can attempt to use 
simulation to estimate (). This is done as follows: Generate x?), ... , X~1) having the 
same joint distribution as X1, ... , Xn and set 

Y - (X(l) x<l)) 1-g 1 , ... , n 

Now let x?), ... ,X~2) simulate a second set of random variables (independent of 
the first set) having the distribution of X1, ... , Xn and set 

y. - (X(2) x<2)) 2-8 1 , ... , n 
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Continue this until you have generated k (some predetermined number) sets and so 
have also computed Y1, Y2, ... , Yk. Now, Y1, ... , Yk are independent and identically 
distributed random variables, each having the same distribution as g(X1, • .. , Xn). 
Thus, if we let Y denote the average of these k random variables - that is, if 

k - l:yi Y= -
. k 
t=l 

then 

E[Y] = () 
E[(Y - B)2] = Var(Y) 

Hence, we can use Y as an estimate of(). Since the expected square of the difference 
between Y and () is equal to the variance of Y, we would like this quantity to be as 
small as possible. [In the preceding situation, Var(Y) = Var(Yi)/k, which is usually 
not known in advance, but must be estimated from the generated values Y1, ... , Yn.] 
We now present three general techniques for reducing the variance of our estimator. 

4.1 Use of Antithetic Variables 

In the foregoing situation, suppose that we have generated Y1 and Y2, which are 
identically distributed random variables having mean B. Now, 

( Y1 + Y2) 1 Var 2 = 4'[Var(Y1) + Var(Y2) + 2Cov(Y1, Y2)] 

Var(Y1) Cov(Y1, Y2) 
= 2 + 2 

Hence, it would be advantageous (in the sense that the variance would be reduced) 
if Y1 and Y2 were negatively correlated rather than being independent. To see how 
we could arrange this, let us suppose that the random variables X 1, ... , Xn are inde
pendent and, in addition, that each is simulated via the inverse transform technique. 
That is, Xi is simulated from pi-1(Ui), where Ui is a random number and Fi is the 
distribution of Xi. Thus, Y1 can be expressed as 

Now, since 1 - U is also uniform over (0, 1) whenever U is a random number (and 
is negatively correlated with U), it follows that Y2 defined by 

will have the same distribution as Y1. Hence, if Y1 and Y2 were negatively correlated, 
then generating Y2 by this means would lead to a smaller variance than if it were 
generated by a new set of random numbers. (In addition, there is a computational 
savings because, rather than having to generate n additional random numbers, we 
need only subtract each of the previous n numbers from 1.) Although we cannot, 
in general, be certain that Y1 and Y2 will be negatively correlated, this often turns 
out to be the case, and indeed it can be proven that it will be so whenever g is a 
monotonic function. 
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4.2 Variance Reduction by Conditioning 

As per the conditional variance formula 

Var(Y) = E[Var(YIZ)] + Var(E[YIZ]) 

Now, suppose that we are interested in estimating E[g(X1, ... ,Xn)] by simulating 
X = (X1, ... ,Xn) and then computing Y = g(X). If, for some random variable Z 
we can compute E[YIZ], then, since Var(YIZ) ;?; 0, it follows from the preceding 
conditional variance formula that 

Var(E[YIZ]) ::;; Var(Y) 

Thus, since E[E[YIZ]] = E[Y], it follows that E[YIZ] is a better estimator of E[Y] 
than is Y. 

Estimation of 1C 

Let U1 and U2 be random numbers and set Vi = 2Ui - i, i = i, 2. As noted in 
Example 2d,(V1, V2) will be uniformly distributed in the square of area 4 centered 
at (0, 0). The probability that this point will fall within the inscribed circle of radius 
i centered at (0, 0) (see Figure 2) is equal to 1T /4 (the ratio of the area of the circle 
to that of the square). Hence, upon simulating a large number n of such pairs and 
setting 

I- _ { i if the jth pair falls within the circle 
' - 0 otherwise 

it follows that Ij,j = i, ... , n, will be independent and identically distributed random 
variables having E[Ij] = 1T /4. Thus, by the strong law of large numbers, 

/i + .. · +In 1T 
n ~4 asn~oo 

Therefore, by simulating a large number of pairs (Vi, V2) and multiplying the pro
portion of them that fall within the circle by 4, we can accurately approximate 1T. 

The preceding estimator can, however, be improved upon by using conditional 
expectation. If we let I be the indicator variable for the pair (Vi, V2), then, rather 
than using the observed value of I, it is better to condition on Vi and so utilize 

Now, 

so • 

E[IIVi] = P{Vf + Vi :5 i1V1} 

= P{Vi :5 i - Vf IVd 

P{Vi :5 i - VflVi = v} = P{Vi :5 i - v2} 

= P{-Ji - v2 :5 V2 :5 Ji - v2} 

=Ji - v2 
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Thus, an improvement on using the average value of I to estimate rr /4 is to use the 

average value of J1 - vf. Indeed, since 

where U is uniform over (0, 1), we can generate n random numbers U and use the 
average value of J1 - lfl as our estimate of rr /4. (Problem 14 shows that this esti
mator has the same variance as the average of then values, J1 - V2.) 

The preceding estimator of rr can be improved even further by noting that the 
function g(u) = J1 - u2,0 ::::;; u ::::;; 1, is a monotonically decreasing function of u, 
and so the method of antithetic variables will reduce the variance of the estimator 
of E[J1 - lfl]. That is, rather than generating n random numbers and using the 
average value of J1 - lfl as an estimator of rr /4, we would obtain an improved 
estimator by generating only n/2 random numbers U and then using one-half the 
average of J1 - lfl + J1 - (1 - U)2 as the estimator of rr /4. 

The following table gives the estimates of rr resulting from simulations, using 
n = 10, 000, based on the three estimators. 

Method 

Proportion of the random points that fall in the circle 
Average value of J1 - lfl 
Average value of Jt - lfl + J1 - (1 - U)2 

Estimate of rr 

3.1612 

3.128448 

3.139578 

A further simulation using the final approach and n = 64, 000 yielded the estimate 
3.143288. • 

4.3 Control Variates 

Again, suppose that we want to use simulation to estimate E[g(X)], where X = 
(X1, ... ,Xn)· But suppose now that for some function/, the expected value of/(X) 
is known-say, it is E[f(X)] =µ,.Then, for any constant a, we can also use 

W = g(X) + a[f(X) - µ,) 

as an estimator of E[g(X)). Now, 

Var(W) = Var[g(X)] + a2Var[f(X)) + 2a Cov[g(X),f(X)] (4.1) 

Simple calculus shows that the foregoing is minimized when 

a= -Cov[f(X),g(X)] (4.2) 
Var[f(X)] 

and for this value of a, 

Vi (W) = ,, [ (X)] _ Cov[f(X),g(X)]2 

ar var g Var[f(X)) (4.3) 

Unfortunately, neither Var[f(X)] nor Cov[f(X)), g(X)] is usually known, so we can
not in general obtain the foregoing reduction in variance. One approach in practice 
is to use the simulated data to estimate these quantities. This approach usually yields 
almost all of the theoretically possible reduction in variance. 
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Summary 

Let F be a continuous distribution function and U a uni
form (0, 1) random variable. Then the random variable 
p-1(U) has distribution function F, where p-1(u) is that 
value x such that F(x) = u. Applying this result, we can 
use the values of uniform (0, 1) random variables, called 
random numbers, to generate the values of other random 
variables. This technique is called the inverse transform 
method. 

Another technique for generating random variables 
is based on the rejection method. Suppose that we have 
an efficient procedure for generating a random variable 
from the density function g and that we desire to generate 
a random variable having density function/. The rejection 
method for accomplishing this starts by determining a con
stant c such that 

max/(x) s c 
g(x) 

It then proceeds as follows: 

1. Generate Y having density g. 
2. Generate a random number U. 

Problems 

I. The following algorithm will generate a random permu
tation of the elements 1, 2, ... , n. It is somewhat faster than 
the one presented in Example la but is such that no posi
tion is fixed until the algorithm ends. In this algorithm, P(i) 
can be interpreted as the element in position i. 

Step 1. Set k = 1. ~ 
Step 2. Set P(l) = 1. 
Step 3. If k = n, stop. Otherwise, let k = k + 1. 
Step 4. Generate a random number U and let 

Go to step 3. 

P(k) = P([kU] + 1) 

P([kU] + 1) = k 

(a) Explain in words what the algorithm is doing. 
(b) Show that at iteration k-that is, when the value of 
P(k) is initially set-P(l), P(2), ... , P(k) is a random per
mutation of 1, 2, ... , k. 
Hint: Use induction and argue that 

Pk{ ii. ii, ... , ij-i. k, ij. ... , ik-2, i} 

p {' . . . . . }1 = k-1 zi,z2, ... ,Zj-1,Z,Zj. ... ,lk-2 k 

= ~! by the induction hypothesis 

3. If U s /(Y)/cg(Y), set X = Y and stop. 
4. Return to step 1. 

The number of passes through step 1 is a geometric ran
dom variable with mean c. 

Standard normal random variables can be efficiently 
simulated by the rejection method (with g being exponen
tial with mean 1) or by the technique known as the polar 
algorithm. 

To estimate a quantity 0, one often generates the 
values of a partial sequence of random variables whose 
expected value is 0. The efficiency of this approach is 
increased when these random variables have a small vari
ance. Three techniques that can often be used to specify 
random variables with mean 0 and relatively small vari
ances are 

1. the use of antithetic variables, 
2. the use of conditional expectations, and 
3. the use of control variates. 

2. Develop a technique for simulating a random variable 
having density function 

f (x) = {e~ -oo < x < 0 
e2x O<x<oo 

3. Give a technique for simulating a random variable hav
ing the probability density function 

1 
-(x - 2) 2sxs3 
2 

f(x) = ~ (2 - ~) 3<xS6 

0 otherwise 

4. Present a method for simulating a random variable hav
ing distribution function 

0 x s -3 
1 x - + - -3 < x < 0 

F(x) = 
2 6 

1 x2 

2 + 32 0<XS4 

1 x > 4 
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S. Use the inverse transformation method to present an 
approach for generating a random variable from the 
Weibull distribution 

. F(t) = 1 - e-atfi t 2: 0 

using a different exponential density- that is, we could use 
the density g(x) = 1..e-J..x. Show that the mean number 
of iterations needed in the rejection scheme is minimized 
when/..= 1. 

11. Use the rejection method withg(x) = 1,0 < x < 1, to 
6. Give a method for simulating a random variable having determine an algorithm for simulating a random variable 
failure rate function having density function 
(a) /..(t) = c; 

(b) /..(t) =ct; 
(c) /..(t) = ct2; 
(d) /..(t) = ct3. 

7. Let F be the distribution function 
F(x) = xn 0 < x < 1 

(a) Give a method for simulating a random variable hav
ing distribution F that uses only a single random number. 
(b) Let Ui, ... , Un be independent random numbers. 
Show that 

P{max(U1, ... , Un) s x} = ~ 

(c) Use part (b) to give a second method of simulating a 
random variable having distribution F. 

8. Suppose it is relatively easy to simulate from F; for each 
i = 1, ... , n. How can we simulate from 

n 
(a) F(x) = CT F;(x)? 

i=l 
n 

(b) F(x) = 1 - CT [1 - F;(x)]? 

f(x) = {60x3(1 - x)2 0 < x .< 1 
0 otherwise 

12. Explain how you could use random numbers to 
approximate f J k(x) dx, where k(x) is an arbitrary func
tion. 
Hint: If U is uniform on (0, 1), what is E[k(U)]? 

13. Let (X, Y) be uniformly distributed in the circle of 
radius 1 centered at the origin. Its joint density is thus 

1 
f(x,y) = - 0 s x2 + y2 ~ 1 

1f 

Let R = (X2 + Y2)112 and 8 = tan-1(Y/X) denote 
the polar coordinates of (X, Y). Show that R and 8 are 
independent, with R2 being uniform on (0, 1) and(} being 
uniform on (0, 2n). 

14. In Example 4a, we showed that 

E[(l - V2)1;2] = E[(l - U2)1;2] = ~ 
4 

i=l 
when Vis uniform (-1, 1) and U is uniform (0, 1). Now 

9. Suppose we have a method for simulating random vari- show that 
ables from the distributions Fi and F2. Explain how to 
simulate from the distribution 

F(x) =pF1(x) + (1 - p)F2(x) 0 < p < 1 

Give a method for simulating from 

l ~(1 - e-3x) + ~x 0 < x s 1 
F(x) = 

~ (1 - e-3x) + ~ x > 1 

Io. In Example 2c we simulated the absolute value of a 
unit normal by using the rejection procedure on exponen
tial random variables with rate 1. This raises the question 
of whether we could obtain a more efficient algorithm by 

Self-Test Problems and Exercises 

and find their common value. 

IS. (a) Verify that the minimum of (4.1) occurs when a is 
as given by ( 4.2). 
(b) Verify that the minimum of (4.1) is given by (4.3). 

16. Let X be a random variable on (0, 1) whose density is 
f (x). Show that we can estimate JJ g(x) dx by simulating X 
and then taking g(X)/f(X) as our estimate. This method, 
called importance sampling, tries to choose f similar in 
shape tog, so that g(X)/f(X) has a small variance. 

I. The random variable X has probability density 2. Give an approach for simulating a random variable hav-
function ing probability density function 

f (x) = cc o < x < 1 

(a) Find the value of the constant C. 
(b) Give a method for simulating such a random variable. 

f(x) = 30(x2 - 2x3 + x4) 0 < x < 1 

3. Give an efficient algorithm to simulate the value of a 
random variable with probability mass function 

Pl= .15 P2 = .2 p3 = . .35 p4 = .30 
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4. If Xis a normal random variable with meanµ, and vari
ance a 2 , define a random variable Y that has the same 
distribution as X and is negatively correlated with it. 

s. Let X and Y be independent exponential random vari
ables with mean 1. 

Reference 

(a) Explain how we could use simulation to estimate 
E[eXY]. 
(b) Show how to improve the estimation approach in part 
(a) by using a control variate. 

[1] Ross, S. M. Simulation. 5th ed. San Diego: Academic Press, Inc., 2012. 

Solutions to Self-Test Problems and Exercises 

I. (a) 1 = C f01 edx => C = 1/(e - 1) 

(b) F(x) =Cf~ eYdy = ~~l, 0 :S x :S 1 
Hence, if we let X = p- l ( U), then 

or 

eX - 1 
U=--

e - 1 

X = log(U(e - 1) + 1) 

Thus, we can simulate the random variable X by generat
ing a random number U and then setting X = log(U(e -
1) + 1). 

2. Use the acceptance-rejection method with g(x) = 1, 0 < 
x < 1. Calculus shows that the maximum value off(x)lg(x) 
occurs at a value of x, 0 < x < 1, such that 

2x - 6x2 + 4x3 = 0 

or, equivalently, when 

Step 3. If U2 :S 16(Uf - 2U{ + U{), set X = U1; else 
return to Step 1. 

3. It is most efficient to check the higher probability values 
first, as in the following algorithm: 
Step L Generate a random number U. 
Step 2. If U :S .35, set X = 3 and stop. 
Step 3. If U :S .65, set X = 4 and stop. 
Step 4. If µ :S .85, set X = 2 and stop. 
Step 5. X = 1. 

4. 2µ, - x 
S. (a) Generate 2n independent exponential random vari
ables with mean 1,Xi, Yi, i = 1, ... ,n, and then use the 

n 
estimator L eX;Y; /n. 

i=l 
(b) We can use XY as a control variate to obtain an esti
mator of the type 

n 

~)e¥;Y; + cXiYi)/n 
i=l 

4x2 - 6x + 2 = (4x - 2)(x - 1) = 0 
Another possibility would be to use XY + X 2 Y2 /2 as the 

The maximum thus occurs when x = 1/2, and it follows control variate and so obtain an estimator of the type 
that 

C = maxf(x)/g(x) = 30(1/4 - 2/8 + 1/16) = 15/8 

Hence, the algorithm is as follows: 

Step L Generate a random number U1. 
Step 2. Generate a random number U2. 

n 

~)e¥;Y; + c[XSi + Xf Yt /2 - 1/2])/n 
i=l 

The motivation behind the preceding formula is based on 
the fact that the first three terms of the MacLaurin series 
expansion of eY are 1 + xy + (x2y2)/2. 



Common Discrete Distributions 

• Bemoulli(p) X indicates whether a trial that results in a success with probability 
p is a success or not. 

E[X] = p, Var(X) = p(l - p). 

P{X= 1} =p 

P{X= O} = 1 - p 

• Binomial(n,p) X represents the number of successes inn independent trials when 
each trial is a success with probability p. 

(n) . . P{X = i} = i p 1(1 - p)n-i, 

E[X] = np, Var(X) = np(l - p). 
Note. Binomial(l,p) = Bernoulli(p). 

i=0,1, ... ,n 

• Geometric(p) Xis the number of trials needed to obtain a success when each trial 
is independently a success with probability p. 

P(X = i) = p(l - p)i-l , i = 1, 2, ... , 

E[X] = }. Var(X) = 7. 
• Negative Binomial(r,p) Xis the number of trials needed to obtain a total of r 

successes when each trial is independently a success with probability p. 

P(X = i) = G = ~)p'(l - p)i-r, i = r,r + 1,r + 2, ... 

E[X] = !., Var(X) = rSf. p p 
Notes. 
1. Negative Binomial(l,p) = Geometric(p). 
2. Sum of r independent Geometric(p) random variables is Negative Binomial(r,p) 

• Poisson(.A.) Xis used to model the number of events that occur when these events 
are either independent or weakly dependent and each has a small probability of 
occurrence. 

P{x "} ->.., i1·1 = l = e A l., 

E[X] =.A., Var(X) =.A.. 
Notes. 

i=0,1,2, ... 

1. A Poisson random variable X with parameter .A. = np provides a good approx
imation to a Binomial(n,p) random variable when n is large and pis small. 
2. If events are occurring one at a time in a random manner for which (a) the 
number of events that occur in disjoint time intervals is independent and (b) the 
probability of an event occurring in any small time interval is approximately .A. 
times the length of the interval, then the number of events in an interval of length 
t will be a Poisson(At) random variable. 

• Hypergeometric X is the number of white balls in a random sample of n balls 
chosen without replacement from an urn of N balls of which m are white. 

From Endpapers of A First Course in Probability, Ninth Edition. Sheldon Ross. 
Copyright© 2014 by Pearson Education, Inc. All rights reserved. 
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The preceding uses the convention that (j) = 0 if either j < 0 or j > r. 

Withp = m/N, E[X] = np, Var(X) = Z=J.np(1 - p) 
Note. If each ball were replaced before the next selection, then X would' be a 
Binomial(n,p) random variable. 

• Negative Hypergeometric X is the number of balls that need be removed from 
an urn that contains n + m balls, of which n are white, until a total of r white balls 
has been removed, where r :::; n. 

P{X = k} = (,~1)(k'::.,) n - r + 1 
(~~7) n + m - k + 1 ' 

k;::::: r 

E[X] = r n+m+l Var(X) = mr(n+l-r)(n+m+l) 
n+r ' (n+l)2(n+2) 



Common Continuous Distributions 

• Uniform (a, b) X is equally likely to be near each value in the interval (a, b ). Its 
density function is 

1 
f(x) = -b--, a < x < b 

-a 

E[X] = ~, Var(X) = <b1;>2
• 

• Normal(µ,, a 2) X is a random fluctuation arising from many causes. Its density 
function is 

f(x) = _l_e-<x-µ)2 /2a2 ' 
../2ii O' 

-OO<X<OO 

E[X] = µ, , Var(X) = u2 
When µ, = 0, a = 1, Xis called a standard normal. 
Notes. 
1. If Xis Normal(µ,,a 2), then Z = X-;;µ is standard normal. 
2. Sum of independent normal random variables is also normal. 
3. An important result is the central limit theorem, which states that the distri
bution of the sum of the first n of a sequence of indeplmdent and identically 
distributed random variables becomes normal as n goes to infinity, for any dis
tribution of these random variables that has a finite mean and variance. 

• Exponential(A) Xis the waiting time until an event occurs when events are always 
occurring at a random rate A > 0. Its density is 

f (x) = Ae->..x, x > 0 

E[X] = f, Var(X) = b , P(X > x) = e->..x, x > 0. 
Note. X is memoryless, in that the remaining life of an item whose life distribution 
is Exponential(A) is also Exponential(A), no matter what the current age of the 
item is. 

• Gamma( a, A) When a = n, Xis the waiting time until n events occur when events 
are always occurring at a random rate A > 0. Its density is 

Ae->..t(At)a-l 
f(t) = r(a) ' t > 0 

where f(a) = J(;° e-x~-1dx is called the gamma function. 
E[X] = r• Var(X) = "fi· 
Notes. 
1. Gamma(l,A) is exponential(A). 
2. If the random variables are independent, then the sum of a Gamma(a1, A) and 
a Gamma(a2,A) is a Gamma(a1 +a2,A). 
3. The sum of n independent and identically distributed exponentials with para
meter A is a Gamma(n,A) random variable. 

• Beta( a, b) Xis the distribution of a random variable taking on values in the inter
val (0, 1). Its density is 

1 
f(x) = --xa-l(l - x)b-l, 0 < x < 1 

B(a,b) 

where B(a,b) =fl x°-1(1 - x)b-ldx is called the beta function. 

E[X] = ah Var(X) = (a+b)2C~+b+l) 
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Notes. 
1. Beta(l, 1) and Uniform{O, 1) are identical. 
2. The /h smallest of n independent uniform (0, 1) random variables is a Beta(j, n -
j + 1) random variable. 

• Chi-Squared(n) Xis the sum of the squares of n independent standard normal 
random variables. Its density is 

x > 0 

Notes. 
1. The Chi-Squared(n) distribution is the same as the Gamma(n/2, 1/2) distribu
tion. 
2. The sample variance of n independent and identically distributed Normal{µ,, a 2) 

random variables multiplied by !S1 is a Chi-Squared(n - 1) random variable, and 
<T 

it is independent of the sample mean. 
• Cauchy X is the tangent of a uniformly distributed random angle between -rr /2 

and rr /2. Its density is 

1 
f(x) = rr(l + x2) ' -00 < x < 00 

E[X] = 0 Var(X) = oo. 
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